Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167155, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730043

RESUMO

Indo-Gangetic Plain (IGP) experiences a heavy load of particulate pollution impacting the 9 % of the global population living in this region. The present study examines the dithiothreitol (DTT) assay-based oxidative potential (OP) of PM2.5 and the major sources responsible for the observed OP over the central IGP (Kanpur) during winter. The volume normalized OP (OPV) of PM2.5 varied from 2.7 to 10 nmol DTT min-1 m-3 (5.5 ± 1.5) and mass normalized OP (OPM) of PM2.5 varied from 19 to 58 pmol DTT min-1 µg-1 (34 ± 8.0), respectively. Major sources of PM2.5 were identified using the positive matrix factorization (PMF) and the contribution of these sources to observed OP was estimated through multivariate linear regression of OPv with PMF-resolved factors. Although the PM2.5 mass was dominated by secondary aerosols (SA, 28 %), followed by crustal dust (CD, 24 %), resuspended fine dust (RFD, 14 %), traffic emissions (TE, 8 %), industrial emissions (IE, 17 %), and trash burning (TB, 9 %), their proportionate contribution to OP (except SA) was different likely due to differences in redox properties of chemical species coming from these sources. The SA showed the highest contribution (23 %) to observed OP, followed by RFD (19 %), IE (8 %), TE & TB (5 %), CD (4 %), and others (36 %). Our results highlight the significance of determining the chemical composition of particulates along with their mass concentrations for a better understanding of the relationship between PM and health impacts. Such studies are still lacking in the literature, and these results have direct implications for making better mitigation strategies for healthier air quality.

2.
Environ Sci Technol ; 56(20): 14605-14616, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36153963

RESUMO

We investigated the influence of biomass burning (BURN), Diwali fireworks, and fog events on the ambient fine particulate matter (PM2.5) oxidative potential (OP) during the postmonsoon (PMON) and winter season in Delhi, India. The real-time hourly averaged OP (based on a dithiothreitol assay) and PM2.5 chemical composition were measured intermittently from October 2019 to January 2020. The peak extrinsic OP (OPv: normalized by the volume of air) was observed during the winter fog (WFOG) (5.23 ± 4.6 nmol·min-1·m-3), whereas the intrinsic OP (OPm; normalized by the PM2.5 mass) was the highest during the Diwali firework-influenced period (29.4 ± 18.48 pmol·min-1·µg-1). Source apportionment analysis using positive matrix factorization revealed that traffic + resuspended dust-related emissions (39%) and secondary sulfate + oxidized organic aerosols (38%) were driving the OPv during the PMON period, whereas BURN aerosols dominated (37%) the OPv during the WFOG period. Firework-related emissions became a significant contributor (∼32%) to the OPv during the Diwali period (4 day period from October 26 to 29), and its contribution peaked (72%) on the night of Diwali. Discerning the influence of seasonal and episodic sources on health-relevant properties of PM2.5, such as OP, could help better understand the causal relationships between PM2.5 and health effects in India.


Assuntos
Poluentes Atmosféricos , Humanos , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Ditiotreitol , Poeira/análise , Monitoramento Ambiental , Índia , Estresse Oxidativo , Material Particulado/análise , Estações do Ano , Sulfatos , Emissões de Veículos/análise
3.
Sci Total Environ ; 794: 148589, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214816

RESUMO

It is well established that light-absorbing organic aerosols (commonly known as brown carbon, BrC) impact climate. However, uncertainties remain as their contributions to absorption at different wavelengths are often ignored in climate models. Further, BrC exhibits differences in absorption at different wavelengths due to the variable composition including varying sources and meteorological conditions. However, diurnal variability in the spectral characteristics of water-soluble BrC (hereafter BrC) is not yet reported. This study presents unique measurement hitherto lacking in the literature. Online measurements of BrC were performed using an assembled system including a particle-into-liquid sampler, portable UV-Visible spectrophotometer with liquid waveguid capillary cell, and total carbon analyzer (PILS-LWCC-TOC). This system measured the absorption of ambient aerosol extracts at the wavelengths ranging from 300 to 600 nm with 2 min integration time and water-soluble organic carbon (WSOC) with 4 min integration time over a polluted megacity, New Delhi. Black carbon, carbon monoxide (CO), nitrogen oxides (NOx), and the chemical composition of non-refractory submicron aerosols were also measured in parallel. Diurnal variability in absorption coefficient (0.05 to 65 Mm-1), mass absorption efficiency (0.01 to 3.4 m-2 gC-1) at 365 nm, and absorption angstrom exponent (AAE) of BrC for different wavelength range (AAE300-400: 4.2-5.8; AAE400-600: 5.5-8.0; and AAE300-600: 5.3-7.3) is discussed. BrC chromophores absorbing at any wavelength showed minimum absorption during afternoon hours, suggesting the effects of boundary layer expansion and their photo-sensitive/volatile nature. On certain days, a considerable presence of BrC absorbing at 490 nm was observed during nighttime that disappears during the daytime. It appeared to be associated with secondary BrC. Observations also infer that BrC species emitted from the biomass and coal burning are more absorbing among all sources. A fraction of BrC is likely associated with trash burning, as inferred from the spectral characteristics of Factor-3 from the PMF analysis of BrC spectra. Such studies are essential in understanding the BrC characteristics and their further utilization in climate models.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Índia , Material Particulado/análise , Água
4.
Sci Total Environ ; 742: 140332, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167294

RESUMO

Delhi, the capital of India, suffers from heavy local emissions as well as regional transport of air pollutants, resulting in severe aerosol loadings. To determine the sources of these pollutants, we have quantified the mass concentrations of 26 elements in airborne particles, measured by an online X-ray fluorescence spectrometer with time resolution between 30 min and 1 h. Measurements of PM10 and PM2.5 (particulate matter <10 µm and < 2.5 µm) were conducted during two consecutive winters (2018 and 2019) in Delhi. On average, 26 elements from Al to Pb made up ~25% and ~19% of the total PM10 mass (271 µg m-3 and 300 µg m-3) in 2018 and 2019, respectively. Nine different aerosol sources were identified during both winters using positive matrix factorization (PMF), including dust, non-exhaust, an S-rich factor, two solid fuel combustion (SFC) factors and four industrial/combustion factors related to plume events (Cr-Ni-Mn, Cu-Cd-Pb, Pb-Sn-Se and Cl-Br-Se). All factors were resolved in both size ranges (but varying relative concentrations), comprising the following contributions to the elemental PM10 mass (in % average for 2018 and 2019): Cl-Br-Se (41.5%, 36.9%), dust (27.6%, 28.7%), non-exhaust (16.2%, 13.7%), S-rich (6.9%, 9.2%), SFC1 + SFC2 (4%, 7%), Pb-Sn-Se (2.3%, 1.66%), Cu-Cd-Pb (0.67%, 2.2%) and Cr-Ni-Mn (0.57%, 0.47%). Most of these sources had the highest relative contributions during late night (22:00 local time (LT)) and early morning hours (between 03:00 to 08:00 LT), which is consistent with enhanced emissions into a shallow boundary layer. Modelling of airmass source geography revealed that the Pb-Sn-Se, Cl-Br-Se and SFC2 factors prevailed for northwest winds (Pakistan, Punjab, Haryana and Delhi), while the Cu-Cd-Pb and S-rich factors originated from east (Nepal and Uttar Pradesh) and the Cr-Ni-Mn factor from northeast (Uttar Pradesh). In contrast, SFC1, dust and non-exhaust were not associated with any specific wind direction.

5.
Environ Pollut ; 265(Pt B): 114813, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32504975

RESUMO

This study examined the long-term trends in chemical components in PM2.5 (particulate matter with aerodynamic diameter ≤2.5 µm) samples collected at Lulin Atmospheric Background Station (LABS) located on the summit of Mt. Lulin (2862 m above mean sea level) in Taiwan in the western North Pacific during 2003-2018. High ambient concentrations of PM2.5 and its chemical components were observed during March and April every year. This enhancement was primarily associated with the long-range transport of biomass burning (BB) smoke emissions from Indochina, as revealed from cluster analysis of backward air mass trajectories. The decreasing trends in ambient concentrations of organic carbon (-0.67% yr-1; p = 0.01), elemental carbon (-0.48% yr-1; p = 0.18), and non-sea-salt (nss) K+ (-0.71% yr-1; p = 0.04) during 2003-2018 indicated a declining effect of transported BB aerosol over the western North Pacific. These findings were supported by the decreasing trend in levoglucosan (-0.26% yr-1; p = 0.20) during the period affected by the long-range transport of BB aerosol. However, NO3- displayed an increasing trend (0.71% yr-1; p = 0.003) with considerable enhancement resulting from the air masses transported from the Asian continent. Given that the decreasing trends were for the majority of the chemical components, the columnar aerosol optical depth (AOD) also demonstrated a decreasing trend (-1.04% yr-1; p = 0.0001) during 2006-2018. Overall decreasing trends in ambient (carbonaceous aerosol and nss-K+) as well as columnar (e.g., AOD) aerosol loadings at the LABS may influence the regional climate, which warrants further investigations. This study provides an improved understanding of the long-term trends in PM2.5 chemical components over the western North Pacific, and the results would be highly useful in model simulations for evaluating the effects of BB transport on an area.


Assuntos
Poluentes Atmosféricos/análise , Aerossóis/análise , Altitude , Ásia , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Taiwan
6.
Environ Sci Pollut Res Int ; 27(26): 33339-33350, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32533475

RESUMO

Light-absorbing organic aerosol (brown carbon (BrC)) can significantly affect Earth's radiation budget and hydrological cycle. Biomass burning (BB) is among the major sources of atmospheric BrC. In this study, day/night pair (10-h integrated) of ambient PM2.5 were sampled every day before (defined as T1, n = 21), during (T2, n = 36), and after (T3, n = 8) a large-scale paddy-residue burning during October-November over Patiala (30.2° N, 76.3° E, 250 m amsl), a site located in the northwestern Indo-Gangetic Plain (IGP). PM2.5 concentration varied from ~ 90 to 500 µg m-3 (average ± 1σ standard deviation 230 ± 114) with the average values of 154 ± 57, 271 ± 122, and 156 ± 18 µg m-3 during T1, T2, and T3 periods, respectively, indicating the influence of BB emissions on ambient air quality. The absorption coefficient of BrC (babs) is calculated from the high-resolution absorption spectra of water-soluble and methanol-soluble organic carbon measured at 300 to 700 nm, and that at 365 nm (babs_365) is used as a general measure of BrC. The babs_365_Water and babs_365_Methanol ranged ~ 2 to 112 Mm-1 (avg 37 ± 27) and ~ 3 to 457 Mm-1 (avg 121 ± 108), respectively, suggesting a considerable presence of water-insoluble BrC. Contrasting differences were also observed in the daytime and nighttime values of babs_365_Water and babs_365_Methanol. Further, the levoglucosan showed a strong correlation with K+ (slope = 0.89 ± 0.06, R = 0.92) during the T2 period. We propose that this slope (~ 0.9) can be used as a typical characteristics of the emissions from paddy-residue burning over the IGP. Absorption Ångström exponent (AAE) showed a clear day/night variability during the T2 period, and lower AAEMethanol compared to AAEWater throughout the sampling period. Further at 365 nm, average relative atmospheric radiative forcing (RRF) for BrCWater is estimated to be ~ 17%, whereas that of BrCMethanol ~ 62% with respect to elemental carbon, suggesting that BrC radiative forcing could be largely underestimated by studies those use BrCWater only as a surrogate of total BrC.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Aerossóis/análise , Biomassa , Monitoramento Ambiental , Material Particulado/análise , Água
7.
J Environ Manage ; 244: 328-343, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31129465

RESUMO

The present study examines the spatial, seasonal and inter annual variation of biomass burning and its impact on regional aerosol optical properties over Northern India using multi-satellite aerosol observations: Active fire points, AOD (550 nm) and AE (550-860 nm) from MODIS retrievals during January 2003-December 2017 and AAOD (388 nm), SSA (388 nm) and AI from OMI UV retrievals during January 2005-December 2017. Results from MODIS active fire count statistics indicate an increase in the number of fire occurrences (average 1477 fires per year) over India in a period of 15 years (2003-2017). The dominant fire seasons are (i) Pre-monsoon (March to May) accounting to more than 45% and (ii) Post-Monsoon having 24% of total annual fires counts. However, the crop residue burning hotspot region located in Punjab and Haryana, constitutes 26% of the total fires in India. At an average, 15456 (77.08%) fire counts were reported during the paddy season, whereas 3296 (16.44%) fire counts during wheat season respectively. The crop residue burning over the northwest IGP (Punjab) significantly affect the aerosol optical properties locally as well in the downwind regions during post-monsoon season i.e., crop residue fires increased by 4% (170 fires per year) with corresponding AOD, AAOD & AI increased by 8%, 9% & 11% respectively. The satellite observation shows large gradient of aerosol parameters from north-west to south-east along the Himalayan foot-hills which indicates the regional transport of smoke aerosols over the region. This is also supported by ground based AOD observations at four locations (Patiala, Delhi, Dehradun and Kanpur) and Black Carbon measurements at two locations (Patiala and Dehradun). The climatological averaged values of ground based AOD550 for Patiala, Delhi, Dehradun and Kanpur are 0.52 ±â€¯0.26, 0.75 ±â€¯0.40, 0.45 ±â€¯0.24 and 0.57 ±â€¯0.29 respectively whereas BC concentrations are 8.43 ±â€¯3.14 µg m-3 & 3.36 ±â€¯1.26 µg m-3 for Patiala & Dehradun respectively. Comparison of MODIS derived AOD agrees well with ground based AODs (overall R = 0.86 and RMSE = 0.14). In addition, CALIPSO shows the maximum amount of biomass burning smoke aerosols present within the atmospheric boundary layer and some cases it extending up to 2-3 km altitudes. The smoke aerosol transport pathways originated from crop residue burning were analyzed using Hysplit forward trajectories. The results reveal that majority of smoke aerosols are transported to eastern IGP, central India and adjacent oceanic regions during post-monsoon season.


Assuntos
Poluentes Atmosféricos , Incêndios , Aerossóis , Biomassa , Monitoramento Ambiental , Índia , Estações do Ano
8.
Nat Prod Res ; 33(19): 2868-2872, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30466321

RESUMO

A simple, rapid, accurate and precise RP-HPLC method was developed for the determination of stigmasterol in botanical extract of Ficus deltoidea. Separation was achieved with acetonitrile and acetic acid in water (75:25% v/v) in isocratic mode at 210 nm. Single sharp peak of standard stigmasterol was detected at retention time 3.17 min which overlay with the peak of plant extract at 3.14 min. The calibration curve was found to be linear in a concentration range of 2-10 µg/ml with correlation coefficient of 0.998. The LOD and LOQ were found to be 1.50 µg/ml and 4.55 µg/ml respectively. Accuracy and precision was determined with overall recovery of 99.6-100.1% for stigmasterol and RSD values in both intra-day and inter-day repeatability assay lesser than 0.340%, respectively. The robustness study also indicated that there is no influence of minor changes in detecting wavelength and flow rate of mobile phase on the response.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ficus/química , Extratos Vegetais/análise , Estigmasterol/análise , Acetonitrilas/química , Calibragem , Limite de Detecção , Extratos Vegetais/química
9.
Waste Manag ; 78: 158-163, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32559899

RESUMO

Compost salinity is an ongoing concern for compost producers, especially with certain feedstocks and in arid or semiarid regions. Current testing protocols call for sampling and testing ex-situ via 1:5 (w/v) slurries via electrical conductance. For this research an alternate approach has been proposed, the use of portable X-ray fluorescence (PXRF) spectrometry. Adapting methods developed for soil and water salinity analysis via PXRF, elemental data was used as a proxy for the prediction of compost salinity. In total, 74 compost samples were scanned with PXRF followed by traditional laboratory analysis. Results indicated a strong correlation between the datasets (R2 0.80; RMSE 1.04 dS m-1), similar to findings for soil and water salinity. Furthermore, using the same elemental dataset, compost pH was reasonably predicted (R2 0.63; RMSE 0.35). PXRF has the benefit of being able to be conducted in-situ or in the laboratory. And, multiple chemical parameters of interest can potentially be predicted from the same dataset. In conclusion, PXRF shows promise for rapid, in-situ salinity determination of composted products.

10.
Environ Pollut ; 219: 906-915, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27622841

RESUMO

Size-segregated particulate pollutants (PM<0.95, PM0.95-1.5, PM1.5-3.0, PM3.0-7.2 and PM>7.2) were collected over Patiala (30.33°N, 76.40°E; 250 m amsl), a semi-urban city located in northwestern Indo-Gangetic Plain (IGP), during October, 2012 to September, 2013. Mass concentration of total suspended particulates (TSP), derived by summation of particulate (aerosol) mass in different size range, varied from 88 to 387 µg m-3 with highest mass concentration (∼55% of total mass) in submicron size (PM<0.95) during the entire study period, which broadly reflects relative higher contribution of various anthropogenic sources (emissions from biomass and bio-fuel burning, vehicles, thermal power plants, etc) to ambient particles. Concentration of SO42-, NO3-, NH4+, K+ and Ca2+ exhibited large variability ranging from 0.52 to 40, 0.20 to 19, 0.14 to 12, 0.06 to 5.3 and 0.08 to 5.6 µg m-3, respectively, in different size ranges with varying size distribution for most of the species, except NH4+. A strong linear correlation (r = 0.97) between (SO42- + NO3-) and (K+ + NH4+) concentrations has been observed in submicron particles collected in different seasons, suggesting the formation of secondary inorganic salts. However, relatively poor correlation is observed in higher size ranges where significant correlation between (SO42- + NO3-) and (Ca2+ + Mg2+) has been observed. These observations indicate the acid neutralization by dust in coarser modes of particles. Chemical composition of submicron particulates (PM<0.95) in different seasons as well as for whole year was used to identify PM sources through the application of Positive Matrix Factorization (PMF, version 5.0) model. Based on annual data, PMF analyses suggests that six source factors namely biomass burning emission (24%), vehicular emission (22%), secondary organic aerosols (20%), power plant emission (13%), secondary inorganic aerosols (12%) and mineral dust (9%) contribute to PM<0.95 loading over the study region. Such studies are important in dispersion modeling, health impact assessment, and planning of pollution mitigation strategies.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Material Particulado/análise , Estações do Ano , Aerossóis/análise , Aerossóis/química , Biomassa , Cidades , Monitoramento Ambiental , Índia , Íons/análise , Tamanho da Partícula , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...