Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 14(4): 2816-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24734695

RESUMO

Disperse Multiwall carbon nanotubes (MWCNTs) are incorporated aqueous N-hydroxy methyl acrylamide, which is subjected to crosslinking to develop a transparent conductive composite free standing film. The effects of the concentration of MWCNTs and temperature on optical and electrical properties of nano-composites are investigated. Interestingly, only 0.06 mg/ml of MWCNTs is sufficient to reach the percolation threshold (Phi) for transition in electrical conductivity up to 10(-4) S/cm, with a visible transmittance over 85%, which is well above the reported for such a low level of MWCNTs loading. The electrical conductivity of the composite was measured at 120 degrees C. It has been observed that electrical conductivity increases significantly with the increase in temperature, signifying the semiconducting nature of nano-composites. Finally, current-voltage (I-V) characteristics show liner behaviour, confirms Ohmic nature of nano-composites and metal contact.

2.
J Colloid Interface Sci ; 300(1): 163-8, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16631767

RESUMO

The dispersion behavior of a concentrated ceramic suspension (Al(2)O(3)) has been investigated in terms of capillary suction time (CST) with varying solids concentration both in the absence as well as in the presence of dispersant (APC). The CST value is found to be the lowest at the pH(iep) whereas it increases as the pH is changed either to the acid side or alkaline side due to the repulsive forces acting among the neighboring particles keeping them in more dispersed state. It has been further observed that the CST value increases with increasing concentration of solids in the suspension. The dispersability of the suspension has been quantified in terms of dispersion ratio (DR). The higher the dispersion ratio of a particular system above unity, the better is the dispersability and vice versa. Further, quantification of dispersion stability by the CST technique is found to be useful and practical for optimization of different parameters concerning suspension stability. A correlation is found among the CST, zeta potential, colloidal stability, and maximum solids loading. It has been finally concluded that the CST method could be potentially employed as a quantitative and diagnostic technique for characterizing concentrated ceramic suspension.


Assuntos
Cerâmica/química , Coloides/química , Concentração de Íons de Hidrogênio
3.
J Colloid Interface Sci ; 289(2): 592-6, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15964585

RESUMO

The electrokinetic and adsorption characteristics of alumina suspensions in the presence of Darvan C as dispersant have been investigated. The interaction of Darvan C with alumina has been interpreted in terms of electrokinetic and adsorption measurements. The adsorption density of Darvan C increases greatly with decreasing pH. The isoelectric point (iep) of the sample under investigation is found to be located at pH 9.1. For pH values near and below the point of zero charge, there is an added electrostatic attractive potential for adsorption, which results in high-affinity adsorption behavior. Possible mechanisms of interaction between alumina and Darvan C are described and discussed.

4.
J Colloid Interface Sci ; 291(1): 181-6, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15964586

RESUMO

The colloidal stability of suspensions of alumina particles has been investigated by measuring particle size distribution, sedimentation, viscosity, and zeta potential. Alumina particles were found to be optimally dispersed at pH around 3 to 7.8 without dispersant and at pH 8.5 and beyond with dispersant. The above results corroborate zeta potential and viscosity measurement data well. The surface charge of alumina powder changed significantly with anionic polyelectrolyte (ammonium polycarboxylate, APC) and the iep shifted toward more acidic range under different dispersant conditions. It was found that the essential role played by pH and dispersant (APC) on the charge generation and shift in the isoelectric point of alumina manifests two features: (i) the stability decreases on approaching the isoelectric point from either side of pH, and (ii) the maximum instability was found at pH 9.1 for alumina only and at pH 6.8 for alumina/APC, which is close to the isoelectric points for both the system, respectively. Using the model based on the electrical double-layer theory of surfactant adsorption through shift in isoelectric points, the authors could estimate the specific free energy of interaction (7.501 kcal/mol) between particles and dispersant. The interaction energy, zeta potential, sedimentation, and viscosity results, were used to explain the colloidal stability of the suspension.


Assuntos
Óxido de Alumínio/química , Eletrólitos/química , Água/química , Coloides , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Tamanho da Partícula , Viscosidade
5.
J Colloid Interface Sci ; 254(1): 95-100, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12702429

RESUMO

Additive interactions and their effects on electrokinetic properties of colloidal alumina suspension are presented in this study. Dibasic ammonium citrate (DAC), natural egg albumin, and octanol-2 are chosen as additives. The surface charge behavior of a 5% (w/v) colloidal alumina suspension in the presence of these additives has been studied in detail. The optimum dosage of DAC to have a stable suspension is found to be 3 mg/g of alumina whereas it is 105 and 164 mg/g of alumina for albumin and octanol-2, respectively. Albumin was found to be a better dispersant than DAC and interacts more strongly than DAC with the surface of alumina, while octanol-2 shows physisorbing characteristics. Turbidity measurements indicate that albumin and DAC interact. When the DAC : albumin molar ratio exceeds 10, the turbidity of the solution is higher than the turbidity of pure albumin, indicating the formation of complexes.


Assuntos
Óxido de Alumínio/química , Albuminas/química , Ácido Cítrico/análogos & derivados , Ácido Cítrico/química , Coloides/química , Eletroquímica , Concentração de Íons de Hidrogênio , Cinética , Nefelometria e Turbidimetria , Octanóis/química , Compostos de Amônio Quaternário/química , Suspensões/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA