Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 337: 117591, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996549

RESUMO

In this review article, waste materials (biogenic/non-biogenic) are focused as the flocculants for harvesting of algal biomass. Chemical flocculants are widely utilized for the effective harvesting of algal biomass at a commercial scale while the high cost is a major drawback. The waste materials-based flocculants (WMBF) are started to utilize as one of the cost-effective performance for dual benefits of waste minimization and reuse for sustainable recovery of biomass. The novelty of the article is articulated with the objective that presents an insight of WMBF, classification of WMBF, preparation methods of WMBF, mechanisms of flocculation, factors affecting flocculation-mechanism, challenges and future recommendations that are required for harvesting of algae. The WMBF are shown similar flocculation mechanisms and flocculation efficiencies as chemical flocculants. Thus, the utilization of waste material for the flocculation process of algal cells minimizes the waste load into the environment and transforms the waste materials into valuable resources.


Assuntos
Microalgas , Biomassa , Floculação
2.
Bull Environ Contam Toxicol ; 109(6): 969-976, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35364685

RESUMO

The phytoremediation of wastewater has certain advantages, but the interactions of soil and crop properties have not been systematically studied. This study aimed to analyze how different concentrations of textile dyeing industry wastewater (25%, 50%, 75%, and 100%) affected soil qualities, growth, and yield attributes (Vigna radiata). In reaction to dyeing effluent at varying concentrations, the seed germination percentage, growth metrics such as tolerance index, phytotoxicity percentage, relative toxicity, extreme and plumule length were calculated. With increasing effluent concentrations, a gradual decrease in the germination of seed and seedling growth was observed. The maximal relative toxicity and percentage of phytotoxicity was 100%. Interaction of biometric growth profile relative seed germination, relative root growth, relative shoot growth, growth index, and seedling vigor index of V. radiata and physicochemical parameter of textile dyeing industry wastewater were also investigated by using the Pearson correlation co-efficient. Principal component analysis (PCA) is helped to obtain and recognize the factors/sources accountability of different concentrations of textile dyeing industry wastewater. The results of the PCA revealed that four components (PC1 to PC4) out of total principal components retained PC1, PC2, with values of 69.25% and 28.85%, respectively.


Assuntos
Poluentes Ambientais , Vigna , Águas Residuárias/química , Corantes , Poluentes Ambientais/análise , Plântula/química , Têxteis , Biometria , Solo
3.
J Biotechnol ; 351: 74-98, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427696

RESUMO

Fossil fuels are sharing a large portion of energy demand. Conventional energy sources emit a huge amount of greenhouse gas into the atmosphere, which creates energy and environmental challenges for the ecosystem. To fulfill the world energy demand and to support environmental as well as economic development in a sustainable way, with the utilization of technological advancement of renewable energy resources, algae are presently believed as most adaptable feedstock materials for bioenergy production. Algae has a high fixation rate of atmospheric carbon dioxide which supports to fast growth rate with high productivity per unit area in the form of renewable algal biomass. The present article aims to elaborate on the three generations of biofuels, sustainable microalgae biomass production, cultivation systems, and a wide range of growth parameters. The microalgae harvesting methods and their challenges are also discussed, with a special focus on lipid extraction methods and future r recommendations. The upstream and downstream processes of microalgae could help to harness the microalgae energy in an eco-friendly manner and will help in achieving overall sustainable development.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Ecossistema , Combustíveis Fósseis , Plantas
4.
Bull Environ Contam Toxicol ; 108(3): 507-517, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34255107

RESUMO

Earlier investigations on biological methods of wastewater treatment have revealed that algal based wastewater treatment could be a green, cost effective and efficient approach for the removal of heavy metals. So, this study aimed to assess the potential of microalga Chlorella pyrenoidosa for remediation of heavy metals (Cr, Cu, Pb, Zn, Cd, Mn, and Ni) from varying concentration (25%, 50%, 75 and 100%) of wastewater collected from Common Effluent Treatment Plant. Heavy metals such as Cr, Cu, Pb, Zn, Cd, Mn, and Ni have been removed significantly from the wastewater, with percentage removal ranging from 73%, 60%, 75%, 66%, 87%, 83%, and 74% with 50% test solution, 57%, 59%, 70%, 56%, 72%, 66%, and 62% with 75% test solution, and 47%, 55%, 56%, 71%, 61%, 77%, and 72% with 100% test solution respectively. Studies on biochemical assay (protein, carbohydrate, and pigment) of Chlorella pyrenoidosa were also an important part of the present investigation to understand the interaction of heavy metals with algal biochemical compounds using Pearson correlation co-efficient. Biomass grown in CETP wastewater can be used for synthesis of various fruitful value-added end products like bio-diesel, pharmaceutical products, cosmetic products, bio-adsorbent etc.


Assuntos
Chlorella , Metais Pesados , Purificação da Água , Biomassa , Metais Pesados/análise , Águas Residuárias
5.
J Biotechnol ; 344: 24-31, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34838946

RESUMO

Open sewage contaminated channel wastewater (OSCCW) has high pollutant loads, responsible for eutrophication, when mixed with various channels of urban communities. But, these pollutants can be converted and recovered into useful end products with the help of algal species. In this study, two species of Chlorella (C. vulgaris and C. pyrenoidosa) were selected and investigated for the production of algal biomass and nutrient removal efficiencies with 50% concentration of OSCCW, in a comparative way at lab-scale. Chlorella sp. cultivated in OSCCW have removed nitrate (76.9-78.8%) and phosphate (67.6-79.7%) whereas COD (72.4-76.2%) and BOD (62.3-72.4%) respectively. Correlation analysis was investigated between physico-chemical parameters and biochemical profile of both species to analyze the positive and negative correlation between two variables. The bio-chemical profile and biomass productivity of both species of Chlorella were observed well on the basis of productivity of biomass (60.1, 56.5 mg/l/d), carbohydrate (15.71, 8.82 mg/l/d), protein (11.21, 15.82 mg/l/d), lipid (20.8, 17.5 mg/l/d) and chlorophyll (0.78, 0.67 mg/l/d) in OSCCW. The maximum lipid content (34.6%) was obtained with C. pyrenoidosa as compared to C. vulgaris. Findings also support that OSCCW is well-off with nutrient resources, which can be suitable alternative for algal biomass production and remediated wastewater can be used for animal and fish farming type activities.


Assuntos
Chlorella , Microalgas , Animais , Biomassa , Nitrogênio , Esgotos , Águas Residuárias
6.
Environ Sci Pollut Res Int ; 28(38): 52702-52723, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34462854

RESUMO

The outbreak of COVID-19 pandemic has created havoc all across the globe causing exponential casualties and tremendous health and economic loss. With increasing COVID-19 cases, the amount of biomedical waste has increased manifolds making more people vulnerable to the pandemic. The developing and underdeveloped countries are already facing the challenges of waste management, and the waste generated during the pandemic scenario has added to the already existing challenges. The improper waste management practices need to be corrected; otherwise, the world will be facing a new disaster that could be termed as 'waste disaster'. The increase in COVID-19-associated waste (CAW) quantity and their availability in the environment will result in their easy approach to other organisms, which will possibly increase the potential risk of food chain contamination. Some of the countries have already started to make backup plans and are struggling to overcome the 'waste disaster'. In light of the limited knowledge available on the mutational properties and possible hosts of this newly emerged COVID-19, there is a great demand to have an efficient strategy to prevent the environment from further contamination in India. The necessity of the prevailing time is to create a more efficient, automatic, mechanized, and well-modified waste management system for handling the present situation and delaying the projected waste disaster in the near future in the era of COVID-19. The article aims to address the issues that originated from waste discharges, their potential sources along with possible sustainable solutions.


Assuntos
COVID-19 , Gerenciamento de Resíduos , Países em Desenvolvimento , Humanos , Pandemias , SARS-CoV-2
7.
Bioresour Technol ; 341: 125646, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34418844

RESUMO

The aim of this work was to study the flocculation efficiency of algal biomass (Chlorella pyrenoidosa) in coupling with waste materials i.e. poultry excreta leachate by using other waste material which was obtained from deposition of scaling in electric geyser. Utilization of electric geyser waste material deposit (EGWMD) for flocculation is a novel approach because of various elements which are replica of chemical flocculants responsible for flocculation mechanism in culture medium. Flocculation process was optimized by response surface methodology and 98.21% flocculation efficiency was achieved with designed process parameters as temperature 32.5 °C, flocculant dose 275 mgL-1, pH 5 and time 30 min. The reusability of spent medium was also analyzed at 70.2% and 32.5% flocculation efficiency with two successive steps. The cellular morphology of pre-harvested and post-harvested Chlorella pyrenoidosa was also observed. EGWMD is abundant and freely available that has no application till now and can alternate of chemical flocculants.


Assuntos
Chlorella , Microalgas , Animais , Biomassa , Floculação , Aves Domésticas
8.
Bioresour Technol ; 306: 123116, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203901

RESUMO

Slaughterhouse produce large amount of wastewater, containing high pollutant load in terms of protein, fats and meat pieces, might lead to source of non-point contamination. Various concentrations (25%, 50%, 75%, and 100%) of slaughterhouse wastewater were used to increase the algal biomass production, pollutants removal and biochemical profile analysis under controlled conditions of C. pyrenoidosa. Results showed that the maximum biomass yield 430 mg L-1 was achieved at 50% concentration of wastewater to other concentration of wastewater. Direct relation was observed in between pollution load and nutrient load of SHWW with biochemical profile of C. pyrenoidosa. The COD/BOD ratio (1.9) was found to be significant on the scale of degradability by algal biomass. Sufficient nutrient removal efficiencies (23-42%, 18-48%) and pollutant load efficiencies (17-31%, 7-29%) were observed. Findings showed that slaughterhouse wastewater is rich in nutrients, which can be utilized for algal biomass production and wastewater remediation for future endeavors.

9.
J Environ Manage ; 245: 519-539, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30803750

RESUMO

Rate of energy production is reflecting growth of nations and most of energy produced from the coal and natural gas-based thermal power plants (TPPs). Flue gas (point sources of emission) are main exhaustible form of gases that come from thermal power plants and are continuously promoting climate change and various environmental problems in global scenario. The present available technologies of flue gas treatment are energy and cost-intensive process. Among the available techniques for fixation of flue-gases at sustainable part, microalgal bio-fixation of flue gas is an alternative promising and competent technology with assurance of eco-friendly path of low energy and low-cost solution for pollution abetment with production of value added products. According to mechanism involves during photosynthetic process of microalgae, it utilizes atmospheric CO2 and CO2 from flue gases for their growth. Past, present and future treatment technologies for flue gas with their challenges are discussed. Recent experimental studies and commercially available bioreactors are very particular for bio-fixation of flue gas from thermal power plants are also reviewed with their future perspectives. The commercial viability of process with specific microalgal strains and utilized biomass for further value-added products are suggested with future limitations.


Assuntos
Dióxido de Carbono , Microalgas , Biomassa , Gases , Centrais Elétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...