Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 9: uhac141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072841

RESUMO

Pear (Pyrus spp.) is one of the most common fruit crops grown in temperate regions worldwide. Genetic enhancement of fruit quality is a fundamental goal of pear breeding programs. The genetic control of pear fruit quality traits is highly quantitative, and development of high-density genetic maps can facilitate fine-mapping of quantitative trait loci (QTLs) and gene identification. Bin-mapping is a powerful method of constructing high-resolution genetic maps from large-scale genotyping datasets. We performed whole-genome sequencing of pear cultivars 'Niitaka' and 'Hongxiangsu' and their 176 F 1 progeny to identify genome-wide single-nucleotide polymorphism (SNP) markers for constructing a high-density bin-map of pear. This analysis yielded a total of 1.93 million SNPs and a genetic bin-map of 3190 markers spanning 1358.5 cM, with an average adjacent interval of 0.43 cM. This bin-map, along with other high-density genetic maps in pear, improved the reference genome assembly from 75.5 to 83.7% by re-anchoring the scaffolds. A quantitative genetic analysis identified 148 QTLs for 18 fruit-related traits; among them, QTLs for stone cell content, several key monosaccharides, and fruit pulp acids were identified for the first time in pear. A gene expression analysis of six pear cultivars identified 399 candidates in the identified QTL regions, which showed expression specific to fruit developmental stages in pear. Finally, we confirmed the function of PbrtMT1, a tonoplast monosaccharide transporter-related gene responsible for the enhancement of fructose accumulation in pear fruit on linkage group 16, in a transient transformation experiment. This study provides genomic and genetic resources as well as potential candidate genes for fruit quality improvement in pear.

2.
Plant Cell Physiol ; 63(11): 1573-1583, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-35715986

RESUMO

Human selection on wild populations mostly favored a common set of plant traits during domestication. This process of direct selection also altered other independent traits that were not directly perceived or desired during crop domestication and improvement. A deeper knowledge of the inadvertent and undesirable phenotypic effects and their underlying genetic causes can help design strategies to mitigate their effects and improve genetic gain in crop plants. We review different factors explaining the negative consequences of plant domestication at the phenotypic and genomic levels. We further describe the genetic causes of undesirable effects that originate from the selection of favorable alleles during plant domestication. In addition, we propose strategies that could be useful in attenuating such effects for crop improvement. With novel -omics and genome-editing tools, it is relatively approachable to understand and manipulate the genetic and biochemical mechanisms responsible for the undesirable phenotypes in domesticated plants.


Assuntos
Produtos Agrícolas , Domesticação , Humanos , Produtos Agrícolas/genética , Edição de Genes , Fenótipo , Alelos
3.
Front Plant Sci ; 12: 629776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557205

RESUMO

Apple replant disease (ARD), incited by a pathogen complex including Pythium ultimum, causes stunted growth or death of newly planted trees at replant sites. Development and deployment of resistant or tolerant rootstocks offers a cost-effective, ecologically friendly, and durable approach for ARD management. Maximized exploitation of natural resistance requires integrated efforts to identify key regulatory mechanisms underlying resistance traits in apple. In this study, miRNA profiling and degradome sequencing identified major miRNA pathways and candidate genes using six apple rootstock genotypes with contrasting phenotypes to P. ultimum infection. The comprehensive RNA-seq dataset offered an expansive view of post-transcriptional regulation of apple root defense activation in response to infection from P. ultimum. Several pairs of miRNA families and their corresponding targets were identified for their roles in defense response in apple roots, including miR397-laccase, miR398-superoxide dismutase, miR10986-polyphenol oxidase, miR482-resistance genes, and miR160-auxin response factor. Of these families, the genotype-specific expression patterns of miR397 indicated its fundamental role in developing defense response patterns to P. ultimum infection. Combined with other identified copper proteins, the importance of cellular fortification, such as lignification of root tissues by the action of laccase, may critically contribute to genotype-specific resistance traits. Our findings suggest that quick and enhanced lignification of apple roots may significantly impede pathogen penetration and minimize the disruption of effective defense activation in roots of resistant genotypes. The identified target miRNA species and target genes consist of a valuable resource for subsequent functional analysis of their roles during interaction between apple roots and P. ultimum.

4.
Plant Physiol ; 185(2): 295-317, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721892

RESUMO

Sugar supply is a key component of hypoxia tolerance and acclimation in plants. However, a striking gap remains in our understanding of mechanisms governing sugar impacts on low-oxygen responses. Here, we used a maize (Zea mays) root-tip system for precise control of sugar and oxygen levels. We compared responses to oxygen (21 and 0.2%) in the presence of abundant versus limited glucose supplies (2.0 and 0.2%). Low-oxygen reconfigured the transcriptome with glucose deprivation enhancing the speed and magnitude of gene induction for core anaerobic proteins (ANPs). Sugar supply also altered profiles of hypoxia-responsive genes carrying G4 motifs (sources of regulatory quadruplex structures), revealing a fast, sugar-independent class followed more slowly by feast-or-famine-regulated G4 genes. Metabolite analysis showed that endogenous sugar levels were maintained by exogenous glucose under aerobic conditions and demonstrated a prominent capacity for sucrose re-synthesis that was undetectable under hypoxia. Glucose abundance had distinctive impacts on co-expression networks associated with ANPs, altering network partners and aiding persistence of interacting networks under prolonged hypoxia. Among the ANP networks, two highly interconnected clusters of genes formed around Pyruvate decarboxylase 3 and Glyceraldehyde-3-phosphate dehydrogenase 4. Genes in these clusters shared a small set of cis-regulatory elements, two of which typified glucose induction. Collective results demonstrate specific, previously unrecognized roles of sugars in low-oxygen responses, extending from accelerated onset of initial adaptive phases by starvation stress to maintenance and modulation of co-expression relationships by carbohydrate availability.


Assuntos
Oxigênio/metabolismo , Proteínas de Plantas/genética , Açúcares/metabolismo , Transcriptoma , Zea mays/metabolismo , Anaerobiose , Glucose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Piruvato Descarboxilase/genética , Estresse Fisiológico , Zea mays/genética
5.
Plant Genome ; 14(2): e20087, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33650322

RESUMO

Fire blight, caused by epiphytotic gram-negative bacteria Erwinia amylovora, is the most destructive bacterial disease of apple (Malus spp.). Genetic mechanisms of fire blight resistance have mainly been studied using traditional biparental quantitative trait loci (QTL) mapping approaches. Here, we use large-scale historic shoot and blossom fire blight data collected over multiple years and genotyping-by-sequencing (GBS) markers to identify significant marker-trait associations in a diverse set of 566 apple [Malus domestica (Suckow) Borkh.] accessions. There was large variation in fire blight resistance and susceptibility in these accessions. We identified 23 and 38 QTL significantly (p < .001) associated with shoot and blossom blight resistance, respectively. The QTL are distributed across all 17 chromosomes of apple. Four shoot blight and 19 blossom blight QTL identified in this study colocalized with previously identified QTL associated with resistance to fire blight or apple scab. Using transcriptomics data of two apple cultivars with contrasting fire blight responses, we also identified candidate genes for fire blight resistance that are differentially expressed between resistant and susceptible cultivars and located within QTL intervals for fire blight resistance. However, further experiments are needed to confirm and validate these marker-trait associations and develop diagnostic markers before use in marker-assisted breeding to develop apple cultivars with decreased fire blight susceptibility.


Assuntos
Erwinia amylovora , Malus , Erwinia amylovora/genética , Estudo de Associação Genômica Ampla , Malus/genética , Melhoramento Vegetal , Doenças das Plantas/genética
7.
J Plant Pathol ; 103(Suppl 1): 131-142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32904534

RESUMO

Fire blight remains a serious threat to commercial apple production in the USA and worldwide. Other diseases and spray damage can result in fire blight-like symptoms that can lead to misdiagnosis and affect disease management strategies. Accurate and timely detection of the fire blight pathogen, Erwinia amylovora, is extremely important to deploy appropriate and timely measures to reduce fire blight epidemics in commercial apple orchards. We tested two commercial lateral flow immunoassays (AgriStrip®, and Pocket Diagnostics kit), Loop mediated isothermal amplification (LAMP), and quantitative PCR (qPCR) to diagnose E. amylovora infected samples in lab and field settings. The AgriStrip® and Pocket Diagnostics kits were able to detect actively growing bacteria up to ×106 cfu/ml bacterial concentration. Pocket Diagnostics kit had less specificity and showed positive tests for E. pyrifolia in addition to E. amylovora. The LAMP assay showed high specificity for E. amylovora and was able to detect up to ×103 cfu/ml bacterial concentrations. The qPCR assay was also able to detect bacterial cells up to ×10-3 cfu/ml bacterial concentration with highly specific E. amylovora detection. Grower surveys and comparative cost-benefit analysis indicated that immunoassay kits are less expensive, easier to use, and require less technical expertise for on-site fire blight diagnosis than LAMP and qPCR. However, the choice of a specific diagnostic assay depends on the time, sensitivity, and specificity required for the detection of fire blight and its management.

8.
BMC Genomics ; 21(1): 809, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213380

RESUMO

BACKGROUND: The NBS disease-related gene family coordinates the inherent immune system in plants in response to pathogen infections. Previous studies have identified NBS-encoding genes in Pyrus bretschneideri ('Dangshansuli', an Asian pear) and Pyrus communis ('Bartlett', a European pear) genomes, but the patterns of genetic variation and selection pressure on these genes during pear domestication have remained unsolved. RESULTS: In this study, 338 and 412 NBS-encoding genes were identified from Asian and European pear genomes. This difference between the two pear species was the result of proximal duplications. About 15.79% orthologous gene pairs had Ka/Ks ratio more than one, indicating two pear species undergo strong positive selection after the divergence of Asian and European pear. We identified 21 and 15 NBS-encoding genes under fire blight and black spot disease-related QTL, respectively, suggesting their importance in disease resistance. Domestication caused decreased nucleotide diversity across NBS genes in Asian cultivars (cultivated 6.23E-03; wild 6.47E-03), but opposite trend (cultivated 6.48E-03; wild 5.91E-03) appeared in European pears. Many NBS-encoding coding regions showed Ka/Ks ratio of greater than 1, indicating the role of positive selection in shaping diversity of NBS-encoding genes in pear. Furthermore, we detected 295 and 122 significantly different SNPs between wild and domesticated accessions in Asian and European pear populations. Two NBS genes (Pbr025269.1 and Pbr019876.1) with significantly different SNPs showed >5x upregulation between wild and cultivated pear accessions, and > 2x upregulation in Pyrus calleryana after inoculation with Alternaria alternata. We propose that positively selected and significantly different SNPs of an NBS-encoding gene (Pbr025269.1) regulate gene expression differences in the wild and cultivated groups, which may affect resistance in pear against A. alternata. CONCLUSION: Proximal duplication mainly led to the different number of NBS-encoding genes in P. bretschneideri and P. communis genomes. The patterns of genetic diversity and positive selection pressure differed between Asian and European pear populations, most likely due to their independent domestication events. This analysis helps us understand the evolution, diversity, and selection pressure in the NBS-encoding gene family in Asian and European populations, and provides opportunities to study mechanisms of disease resistance in pear.


Assuntos
Pyrus , Alternaria , Domesticação , Evolução Molecular , Polimorfismo de Nucleotídeo Único , Pyrus/genética
9.
Sci Rep ; 10(1): 16317, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004843

RESUMO

Development of apple (Malus domestica) cultivars resistant to fire blight, a devastating bacterial disease caused by Erwinia amylovora, is a priority for apple breeding programs. Towards this goal, the inactivation of members of the HIPM and DIPM gene families with a role in fire blight susceptibility (S genes) can help achieve sustainable tolerance. We have investigated the genomic diversity of HIPM and DIPM genes in Malus germplasm collections and used a candidate gene-based association mapping approach to identify SNPs (single nucleotide polymorphisms) with significant associations to fire blight susceptibility. A total of 87 unique SNP variants were identified in HIPM and DIPM genes across 93 Malus accessions. Thirty SNPs showed significant associations (p < 0.05) with fire blight susceptibility traits, while two of these SNPs showed highly significant (p < 0.001) associations across two different years. This research has provided knowledge about genetic diversity in fire blight S genes in diverse apple accessions and identified candidate HIPM and DIPM alleles that could be used to develop apple cultivars with decreased fire blight susceptibility via marker-assisted breeding or biotechnological approaches.


Assuntos
Mapeamento Cromossômico , Erwinia amylovora , Predisposição Genética para Doença/genética , Malus/genética , Doenças das Plantas/microbiologia , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Genes de Plantas/genética , Variação Genética/genética , Técnicas de Genotipagem , Malus/imunologia , Malus/microbiologia , Melhoramento Vegetal , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único/genética , Banco de Sementes , Análise de Sequência de DNA
10.
Mol Plant Microbe Interact ; 33(11): 1277-1279, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32808873

RESUMO

Erwinia amylovora causes fire blight, the most devastating bacterial disease of apples and pears in the United States and worldwide. The model strain E. amylovora Ea1189 has been extensively used to understand bacterial pathogenesis and molecular mechanisms of bacterial-plant interactions. In this work, we sequenced and assembled the de novo genome of Ea1189, using a combination of long Oxford Nanopore Technologies and short Illumina sequence reads. A complete gapless genome assembly of Ea1189 consists of a 3,797,741-bp circular chromosome and a 28,259-bp plasmid with 3,472 predicted genes, including 78 transfer RNAs, 22 ribosomal RNAs, and 20 noncoding RNAs. A comparison of the Ea1189 genome to previously sequenced E. amylovora complete genomes showed 99.94 to 99.97% sequence similarity with 314 to 946 single nucleotide polymorphisms. We believe that the availability of the complete genome sequence of strain Ea1189 will further support studies to understand evolution, diversity and structural variations of Erwinia strains, as well as the molecular basis of E. amylovora pathogenesis and its interactions with host plants, thus facilitating the development of effective management strategies for this important disease.


Assuntos
Erwinia amylovora , Genoma Bacteriano , Malus/microbiologia , Doenças das Plantas/microbiologia , Pyrus/microbiologia , Cromossomos Bacterianos , Erwinia amylovora/genética , Plasmídeos
11.
Plant Dis ; 104(3): 649-655, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31961770

RESUMO

Apple scab, caused by Venturia inaequalis, is a destructive fungal disease of major apple cultivars worldwide, most of which are moderately to highly susceptible. Thus, development of scab resistant cultivars is one of the highest priorities of apple breeding programs. The principal source of resistance for breeding programs has been the scab resistance gene Rvi6 that originated from the Japanese crabapple Malus floribunda (Sieb.) sel. 821. Isolates of V. inaequalis able to overcome Rvi6 have been identified in Europe, but have not yet been reported on the American continents. We recently discovered scab infection on M. floribunda 821 trees in a research orchard at Geneva, NY, U.S.A., where approximately 10% of the leaves bore profusely sporulating apple scab lesions, many of which had coalesced to cover entire leaves. We observed both chlorosis, typical to Rvi6, and pinpoint pitting symptoms typical to failed infections by V. inaequalis on hosts bearing the Rvi7 gene. We assessed genetic diversity and population genetic structure of 11 V. inaequalis isolates in total, of North American and European origin, isolated from M. floribunda 821, 'Nova Easygro', 'Golden Delicious', TSR33T239, 'Schone van Boskoop', and 'Prima', using 16,321 genome-wide SNPs. Population genetic structure and PCA separated the isolates into distinct European and U.S. groups. The forgoing suggests that the new Rvi6 virulent isolates emerged within U.S. populations, rather than being transported from Europe. The complete resistance breakdown in M. floribunda 821 but not in descendant cultivars, which kept their field resistance, suggests that durable resistance to apple scab will require a more comprehensive understanding of Rvi6 mediated resistance in diverse genetic backgrounds.


Assuntos
Ascomicetos , Malus , Cruzamento , Europa (Continente) , Doenças das Plantas
12.
BMC Plant Biol ; 19(1): 579, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870310

RESUMO

BACKGROUND: Although it is known that resistant rootstocks facilitate management of fire blight disease, incited by Erwinia amylovora, the role of rootstock root traits in providing systemic defense against E. amylovora is unclear. In this study, the hypothesis that rootstocks of higher root vigor provide higher tolerance to fire blight infection in apples is tested. Several apple scion genotypes grafted onto a single rootstock genotype and non-grafted 'M.7' rootstocks of varying root vigor are used to assess phenotypic and molecular relationships between root traits of rootstocks and fire blight susceptibility of apple scion cultivars. RESULTS: It is observed that different root traits display significant (p < 0.05) negative correlations with fire blight susceptibility. In fact, root surface area partially dictates differential levels of fire blight susceptibility of 'M.7' rootstocks. Furthermore, contrasting changes in gene expression patterns of diverse molecular pathways accompany observed differences in levels of root-driven fire blight susceptibility. It is noted that a singular co-expression gene network consisting of genes from defense, carbohydrate metabolism, protein kinase activity, oxidation-reduction, and stress response pathways modulates root-dependent fire blight susceptibility in apple. In particular, WRKY75 and UDP-glycotransferase are singled-out as hub genes deserving of further detailed analysis. CONCLUSIONS: It is proposed that low root mass may incite resource-limiting conditions to activate carbohydrate metabolic pathways, which reciprocally interact with plant immune system genes to elicit differential levels of fire blight susceptibility.


Assuntos
Erwinia amylovora/fisiologia , Malus/fisiologia , Doenças das Plantas/microbiologia , Resistência à Doença , Genótipo , Malus/imunologia , Malus/microbiologia , Imunidade Vegetal/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia
13.
Sci Rep ; 9(1): 14017, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570749

RESUMO

The fire blight pathogen, Erwinia amylovora (EA), causes significant economic losses in rosaceae fruit crops. Recent genome sequencing efforts have explored genetic variation, population structure, and virulence levels in EA strains. However, the genomic aspects of population bottlenecks and selection pressure from geographical isolation, host range, and management practices are yet unexplored. We conducted a comprehensive analysis of whole genome sequences of 41 strains to study genetic diversity, population structure, and the nature of selection affecting sub-population differentiation in EA. We detected 72,741 SNPs and 2,500 Indels, representing about six-fold more diversity than previous reports. Moreover, nonsynonymous substitutions were identified across the effector regions, suggesting a role in defining virulence of specific strains. EA plasmids had more diversity than the chromosome sequence. Population structure analysis identified three distinct sub-groups in EA strains, with North American strains displaying highest genetic diversity. A five kilobase genomic window scan showed differences in genomic diversity and selection pressure between these three sub-groups. This analysis also highlighted the role of purifying and balancing selection in shaping EA genome structure. Our analysis provides novel insights into the genomic diversity and selection forces accompanying EA population differentiation.


Assuntos
Erwinia amylovora/genética , Doenças das Plantas/microbiologia , Erwinia amylovora/patogenicidade , Variação Genética , Genoma Bacteriano/genética , Filogenia , Seleção Genética , Análise de Sequência de DNA , Virulência
14.
Plant Physiol ; 180(3): 1467-1479, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061105

RESUMO

Roots have been omitted from previous domestication analyses owing mostly to their subterranean nature. We hypothesized that domestication-associated changes in common bean (Phaseolus vulgaris) roots were due to direct selection for some aboveground traits that also affect roots, and to indirect selection of root traits that improved aboveground plant performance. To test this hypothesis, we compared the root traits of wild and domesticated accessions and performed a multistep quantitative trait locus (QTL) analysis of an intra-Andean recombinant inbred family derived from a landrace and a wild accession. Multivariate analysis of root traits distinguished wild from domesticated accessions and showed that seed weight affects many root traits of young seedlings. Sequential and methodical scanning of the genome confirmed the significant effect of seed weight on root traits and identified QTLs that control seed weight, root architecture, shoot and root traits, and shoot traits alone. The root domestication syndrome in the common bean was associated with genes that were directly selected to increase seed weight but had a significant effect on early root growth through a developmental pleiotropic effect. The syndrome was also associated with genes that control root system architecture and that were apparently the product of indirect selection.


Assuntos
Domesticação , Pleiotropia Genética , Phaseolus/genética , Raízes de Plantas/genética , Locos de Características Quantitativas/genética , Variação Genética , Genótipo , Phaseolus/crescimento & desenvolvimento , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Análise de Componente Principal , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
15.
Hortic Res ; 6: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30962933

RESUMO

Apple cultivars with durable resistance are needed for sustainable management of fire blight, the most destructive bacterial disease of apples. Although studies have identified genetic resistance to fire blight in both wild species and cultivated apples, more research is needed to understand the molecular mechanisms underlying host-pathogen interaction and differential genotypic responses to fire blight infection. We have analyzed phenotypic and transcriptional responses of 'Empire' and 'Gala' apple cultivars to fire blight by infecting them with a highly aggressive E. amylovora strain. Disease progress, based on the percentage of visual shoot necrosis, started showing significant (p < 0.001) differences between 'Empire' and 'Gala' 4 days after infection (dai). 'Empire' seems to slow down bacterial progress more rapidly after this point. We further compared transcriptome profiles of 'Empire' and 'Gala' at three different time points after fire blight infection. More genes showed differential expression in 'Gala' at earlier stages, but the number of differentially expressed genes increased in 'Empire' at 3 dai. Functional classes related to defense, cell cycle, response to stress, and biotic stress were identified and a few co-expression gene networks showed particular enrichment for plant defense and abiotic stress response genes. Several of these genes also co-localized in previously identified quantitative trait locus regions for fire blight resistance on linkage groups 7 and 12, and can serve as functional candidates for future research. These results highlight different molecular mechanisms for pathogen perception and control in two apple cultivars and will contribute toward better understanding of E. amylovora-Malus pathosystem.

16.
PLoS One ; 14(3): e0213293, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840713

RESUMO

An unusual decline and collapse of young established trees known as "rapid apple decline" (RAD) has become a major concern for apple growers, particularly in the northeastern United States. This decline is characterized by stunted growth, pale yellow to reddish leaves, and tree collapse within weeks after onset of symptoms. We studied declining apple trees to identify potential involvement of abiotic and biotic stresses. We used 16S and ITS to profile bacterial and fungal communities in the soil, rhizosphere, roots, and shoots and tested for the presence of six viruses in scions and rootstocks of symptomatic and asymptomatic trees. The viruses detected were not associated with RAD symptoms. Bacterial and fungal populations were highly variable in plant tissue, soil and rhizosphere samples, with bacteroidetes, firmicutes, proteobacteria, acidobacteria, and actinobacteria the predominant bacterial classes in various samples. 'Alphaproteobacteria-rickettsiales', a bacterial class usually reduced in water-limiting soils, had significantly low abundance in root samples of symptomatic trees. Basidiomycota and Ascomycota fungal classes were the most common fungal classes observed, but neither showed differential enrichment between symptomatic and asymptomatic trees. Analyzing weather data showed an extremely cold winter followed by drought in 2015-2016, which likely weakened the trees to make them more susceptible to varied stresses. In addition, similar physical and nutritional soil composition from symptomatic and asymptomatic trees rules out the role of nutritional stress in RAD. Necrotic lesions and wood decay symptoms dispersing from bark or vascular cambium towards the heartwood were observed primarily below the graft union of declining apple trees, suggesting that the rootstock is the originating point of RAD. We speculate that differences in abiotic factors such as moisture levels in declining roots in combination with extreme weather profiles might cause RAD but cannot clearly rule out the involvement of other factors.


Assuntos
Malus/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Solo/química , Árvores/crescimento & desenvolvimento , Tempo (Meteorologia) , Malus/microbiologia , Microbiota , Árvores/microbiologia
17.
Plant Biotechnol J ; 17(8): 1582-1594, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30690857

RESUMO

Pear (Pyrus; 2n = 34), the third most important temperate fruit crop, has great nutritional and economic value. Despite the availability of many genomic resources in pear, it is challenging to genotype novel germplasm resources and breeding progeny in a timely and cost-effective manner. Genotyping arrays can provide fast, efficient and high-throughput genetic characterization of diverse germplasm, genetic mapping and breeding populations. We present here 200K AXIOM® PyrSNP, a large-scale single nucleotide polymorphism (SNP) genotyping array to facilitate genotyping of Pyrus species. A diverse panel of 113 re-sequenced pear genotypes was used to discover SNPs to promote increased adoption of the array. A set of 188 diverse accessions and an F1 population of 98 individuals from 'Cuiguan' × 'Starkrimson' was genotyped with the array to assess its effectiveness. A large majority of SNPs (166 335 or 83%) are of high quality. The high density and uniform distribution of the array SNPs facilitated prediction of centromeric regions on 17 pear chromosomes, and significantly improved the genome assembly from 75.5% to 81.4% based on genetic mapping. Identification of a gene associated with flowering time and candidate genes linked to size of fruit core via genome wide association studies showed the usefulness of the array in pear genetic research. The newly developed high-density SNP array presents an important tool for rapid and high-throughput genotyping in pear for genetic map construction, QTL identification and genomic selection.


Assuntos
Mapeamento Cromossômico , Estudos de Associação Genética , Técnicas de Genotipagem , Pyrus/genética , Genoma de Planta , Genótipo , Polimorfismo de Nucleotídeo Único
18.
Front Plant Sci ; 9: 1578, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443261

RESUMO

Productivity of rice, world's most important cereal is threatened by high temperature stress, intensified by climate change. Development of heat stress-tolerant varieties is one of the best strategies to maintain its productivity. However, heat stress tolerance is a multigenic trait and the candidate genes are poorly known. Therefore, we aimed to identify quantitative trait loci (QTL) for vegetative stage tolerance to heat stress in rice and the corresponding candidate genes. We used genotyping-by-sequencing to generate single nucleotide polymorphic (SNP) markers and genotype 150 F8 recombinant inbred lines (RILs) obtained by crossing heat tolerant "N22" and heat susceptible "IR64" varieties. A linkage map was constructed using 4,074 high quality SNP markers that corresponded to 1,638 recombinationally unique events in this mapping population. Six QTL for root length and two for shoot length under control conditions with 2.1-12% effect were identified. One QTL rlht5.1 was identified for "root length under heat stress," with 20.4% effect. Four QTL were identified for "root length under heat stress as percent of control" that explained the total phenotypic variation from 5.2 to 8.6%. Three QTL with 5.3-10.2% effect were identified for "shoot length under heat stress," and seven QTL with 6.6-19% effect were identified for "shoot length under heat stress expressed as percentage of control." Among the QTL identified six were overlapping between those identified using shoot traits and root traits: two were overlapping between QTL identified for "shoot length under heat stress" and "root length expressed as percentage of control" and two QTL for "shoot length as percentage of control" were overlapping a QTL each for "root length as percentage of control" and "shoot length under heat stress." Genes coding 1,037 potential transcripts were identified based on their location in 10 QTL regions for vegetative stage heat stress tolerance. Among these, 213 transcript annotations were reported to be connected to stress tolerance in previous research in the literature. These putative candidate genes included transcription factors, chaperone proteins (e.g., alpha-crystallin family heat shock protein 20 and DNAJ homolog heat shock protein), proteases, protein kinases, phospholipases, and proteins related to disease resistance and defense and several novel proteins currently annotated as expressed and hypothetical proteins.

19.
Plant Sci ; 274: 153-162, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080599

RESUMO

Genes that control "Domestication Syndrome" traits were direct targets of selection, like those controlling increased seed size in the common bean. However, selection for this trait brought about unintentional selection on genes controlling seedling growth. We hypothesized that wild and domesticated plants have different early seedling growth patterns as an indirect consequence of selection for a larger seed size during domestication, and those differences resulted from changes in gene expression patterns of the wild ancestor. Large seeds pose a challenge to reserve remobilization during early heterotrophic growth, particularly during a transition towards more fertile alluvial soils. To address our hypothesis, we characterized the patterns of gene expression of cotyledon, root, and leaf tissues of 7-day old seedlings of a wild and a landrace accession of the common bean. Differential expression analyses detected genes with contrasting patterns of expression between the two genotypes in all three tissues. Some of the differentially expressed genes with contrasting genotypic patterns are known to have domestication-related signatures of selection. Among these genes were some transcription factors associated with key roles in development. These genes may represent targets of indirect selection and ultimately explain the growth phenotypic differences between wild and domesticated seedlings.


Assuntos
Phaseolus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Phaseolus/genética , Phaseolus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plântula/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética
20.
Theor Appl Genet ; 131(2): 333-351, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29071392

RESUMO

KEY MESSAGE: We report a linkage map for Apios americana and describe synteny with selected warm-season legumes. A translocation event in common bean and soybean is confirmed against Apios and Vigna species. Apios (Apios americana; "apios"), a tuberous perennial legume in the Phaseoleae tribe, was widely used as a food by Native Americans. Work in the last 40 years has led to several improved breeding lines. Aspects of the pollination biology (complex floral structure and tripping mechanism) have made controlled crosses difficult, and the previous reports indicated that the plant is likely primarily an outcrosser. We used a pseudo-testcross strategy to construct a genetic map specific to the maternal parent. The map was built using single-nucleotide polymorphism markers identified by comparing the expressed sequences of individuals in the mapping population against a de novo maternal reference transcriptome assembly. The apios map consists of 11 linkage groups and 1121 recombinationally distinct loci, covering ~ 938.6 cM. By sequencing the transcriptomes of all potential pollen parents, we were able to identify the probable pollen donors and to discover new aspects of the pollination biology in apios. No selfing was observed, but multiple pollen parents were seen within individual pods. Comparisons with genome sequences in other species in the Phaseoleae showed extended synteny for most apios linkage groups. This synteny supports the robustness of the map, and also sheds light on the history of the Phaseoleae, as apios is relatively early diverging in this tribe. We detected a translocation event that separates apios and two Vigna species from Phaseolus vulgaris and Glycine max. This apios mapping work provides a general protocol for sequencing-based construction of high-density linkage maps in outcrossing species with heterogeneous pollen parents.


Assuntos
Fabaceae/genética , Ligação Genética , Polimorfismo de Nucleotídeo Único , Sintenia , Transcriptoma , Mapeamento Cromossômico , Phaseolus/genética , Glycine max/genética , Vigna/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...