Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Med Virol ; 31(6): e2233, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33709529

RESUMO

Cellular receptors in human cytomegalovirus (HCMV) mother to child transmission play an important role in congenital infection. Placental trophoblast cells are a significant cell type in placental development, placental functional processes, and in HCMV transmission. Different cells within the placental floating and chorionic villi present alternate receptors for HCMV cell entry. Syncytiotrophoblasts present neonatal Fc receptors that bind and transport circulating maternal immunoglobulin G across the placental interface which can also be bound to HCMV virions, facilitating viral entry into the placenta and foetal circulation. Cytotrophoblast express HCMV receptors including integrin-α1ß1, integrin-αVß3, epidermal growth factor receptor and platelet-derived growth factor receptor alpha. The latter interacts with HCMV glycoprotein-H, glycoprotein-L and glycoprotein-O (gH/gL/gO) trimers (predominantly in placental fibroblasts) and the gH/gL/pUL128, UL130-UL131A pentameric complex in other placental cell types. The pentameric complex allows viral tropism of placental trophoblasts, endothelial cells, epithelial cells, leukocytes and monocytes. This review outlines HCMV ligands and target receptor proteins in congenital HCMV infection.


Assuntos
Citomegalovirus , Células Endoteliais , Interações Hospedeiro-Patógeno , Placenta/virologia , Feminino , Glicoproteínas , Humanos , Transmissão Vertical de Doenças Infecciosas , Gravidez
3.
Biores Open Access ; 2(1): 67-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23515356

RESUMO

Biomimetic materials such as coral exoskeletons possess unique architectural structures with a uniform and interconnected porous network that can be beneficial as a scaffold material. In addition, these marine structures can be hydrothermally converted to calcium phosphates, while retaining the original structural properties. The ability of biomaterials to stimulate the local microenvironment is one of the main focuses in tissue engineering, and directly coating the scaffold with stem cells facilitates future potential applications in therapeutics and regenerative medicine. In this article we describe a new and simple method that uses a laboratory centrifuge to coat hydrothermally derived beta-tricalcium phosphate macrospheres from coral exoskeleton with stem cells. In this research the optimal seeding duration and speed were determined to be 1 min and 700 g. Scanning electron micrographs showed complete surface coverage by stem cells within 7 days of seeding. This study constitutes an important step toward achieving functional tissue-engineered implants by increasing our understanding of the influence of dynamic parameters on the efficiency and distribution of stem cell attachment to biomimetic materials and how stem cells interact with biomimetic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...