Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 29(33): 2601-2617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916490

RESUMO

The global impact of the COVID-19 pandemic caused by SARS-CoV-2 necessitates innovative strategies for the rapid development of effective treatments. Computational methodologies, such as molecular modelling, molecular dynamics simulations, and artificial intelligence, have emerged as indispensable tools in the drug discovery process. This review aimed to provide a comprehensive overview of these computational approaches and their application in the design of antiviral agents for COVID-19. Starting with an examination of ligand-based and structure-based drug discovery, the review has delved into the intricate ways through which molecular modelling can accelerate the identification of potential therapies. Additionally, the investigation extends to phytochemicals sourced from nature, which have shown promise as potential antiviral agents. Noteworthy compounds, including gallic acid, naringin, hesperidin, Tinospora cordifolia, curcumin, nimbin, azadironic acid, nimbionone, nimbionol, and nimocinol, have exhibited high affinity for COVID-19 Mpro and favourable binding energy profiles compared to current drugs. Although these compounds hold potential, their further validation through in vitro and in vivo experimentation is imperative. Throughout this exploration, the review has emphasized the pivotal role of computational biologists, bioinformaticians, and biotechnologists in driving rapid advancements in clinical research and therapeutic development. By combining state-of-the-art computational techniques with insights from structural and molecular biology, the search for potent antiviral agents has been accelerated. The collaboration between these disciplines holds immense promise in addressing the transmissibility and virulence of SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Inteligência Artificial , Pandemias , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Antivirais/uso terapêutico , Simulação de Acoplamento Molecular , Inibidores de Proteases
2.
Front Biosci (Landmark Ed) ; 28(7): 151, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37525917

RESUMO

BACKGROUND: Breast cancer is one of the most common types of cancer among women worldwide, and its metastasis is a significant cause of mortality. Therefore, identifying potential inhibitors of proteins involved in breast cancer metastasis is crucial for developing effective therapies. BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is a key regulator of mitotic checkpoint control, which ensures the proper segregation of chromosomes during cell division. Dysregulation of BUB1B has been linked to a variety of human diseases, including breast cancer. Overexpression of BUB1B has been observed in various cancer types, and its inhibition has been shown to induce cancer cell death. Additionally, BUB1B inhibition has been suggested as a potential strategy for overcoming resistance to chemotherapy and radiation therapy. Given the importance of BUB1B in regulating cell division and its potential as a therapeutic target, the development of BUB1B inhibitors has been the focus of intense research efforts. Despite these efforts, few small molecule inhibitors of BUB1B have been identified, highlighting the need for further research in this area. In this study, the authors aimed to identify potential inhibitors of BUB1B from mushroom bioactive compounds using computational methods, which could ultimately lead to the development of new treatments for breast cancer metastasis. METHODS: This study has incorporated 70 bioactive compounds (handpicked through literature mining) of distinct mushrooms that were considered and explored to identify a suitable drug candidate. Their absorption, distribution, metabolism and excretion (ADME) properties were obtained to predict the drug-likeness of these 70 mushroom compounds based on Lipinski's rule of 5 (RO5). Screening these bioactive compounds and subsequent molecular docking against BUB1B provided compounds with the best conformation-based binding affinity. The best two complexes, i.e., BUB1B-lepitaprocerin D and BUB1B-peptidoglycan, were subjected to molecular dynamic simulations. Both complexes were assessed for their affinity, stability, and flexibility in protein-ligand complex systems. RESULTS: The molecular dynamic (MD) simulation studies revealed that lepitaprocerin D has an energetically favorable binding affinity with BUB1B. Results showed that the formation of a hydrogen bond between residues ASN123 and SER157, and lepitaprocerin D had strengthened the affinity of lepitaprocerin D with BUB1B. CONCLUSIONS: This study identified lepitaprocerin D as a potential and novel inhibitor for BUB1B that could be a plausible drug candidate for identifying and controlling the spread of breast cancer metastasis.

3.
Pharmaceutics ; 15(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37376174

RESUMO

The objective of this study was to investigate the rhombohedral-structured, flower-like iron oxide (Fe2O3) nanoparticles that were produced using a cost-effective and environmentally friendly coprecipitation process. The structural and morphological characteristics of the synthesized Fe2O3 nanoparticles were analyzed using XRD, UV-Vis, FTIR, SEM, EDX, TEM, and HR-TEM techniques. Furthermore, the cytotoxic effects of Fe2O3 nanoparticles on MCF-7 and HEK-293 cells were evaluated using in vitro cell viability assays, while the antibacterial activity of the nanoparticles against Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae) was also tested. The results of our study demonstrated the potential cytotoxic activity of Fe2O3 nanoparticles toward MCF-7 and HEK-293 cell lines. The antioxidant potential of Fe2O3 nanoparticles was evidenced by the 1,1-diphenyl-2-picrylhydrazine (DPPH) and nitric oxide (NO) free radical scavenging assays. In addition, we suggested that Fe2O3 nanoparticles could be used in various antibacterial applications to prevent the spread of different bacterial strains. Based on these findings, we concluded that Fe2O3 nanoparticles have great potential for use in pharmaceutical and biological applications. The effective biocatalytic activity of Fe2O3 nanoparticles recommends its use as one of the best drug treatments for future views against cancer cells, and it is, therefore, recommended for both in vitro and in vivo in the biomedical field.

4.
Curr Pharm Des ; 29(13): 1002-1008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073145

RESUMO

The production of nanoparticles (NPs) from chemical and physical synthesis has ended due to the involvement of toxic byproducts and harsh analytical conditions. Innovation and research in nanoparticle synthesis are derived from biomaterials that have gained attention due to their novel features, such as ease of synthesis, low-cost, eco-friendly approach, and high water solubility. Nanoparticles obtained through macrofungi involve several mushroom species, i.e., Pleurotus spp., Ganoderma spp., Lentinus spp., and Agaricus bisporus. It is well-known that macrofungi possess high nutritional, antimicrobial, anti-cancerous, and immune-modulatory properties. Nanoparticle synthesis via medicinal and edible mushrooms is a striking research field, as macrofungi act as an eco-friendly biofilm that secretes essential enzymes to reduce metal ions. The mushroom-isolated nanoparticles exhibit longer shelf life, higher stability, and increased biological activities. The synthesis mechanisms are still unknown; evidence suggests that fungal flavones and reductases have a significant role. Several macrofungi have been utilized for metal synthesis (such as Ag, Au, Pt, Fe) and non-metal nanoparticles (Cd, Se, etc.). These nanoparticles have found significant applications in advancing industrial and bio-medical ventures. A complete understanding of the synthesis mechanism will help optimize the synthesis protocols and control the shape and size of nanoparticles. This review highlights various aspects of NP production via mushrooms, including its synthesis from mycelium and the fruiting body of macrofungi. Also, we discuss the applications of different technologies in NP high-scale production via mushrooms.


Assuntos
Agaricales , Anti-Infecciosos , Nanopartículas , Humanos
5.
Diagnostics (Basel) ; 13(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36900109

RESUMO

Cancer is one of the deadliest diseases developed through tumorigenesis and could be fatal if it reaches the metastatic phase. The novelty of the present investigation is to explore the prognostic biomarkers in hepatocellular carcinoma (HCC) that could develop glioblastoma multiforme (GBM) due to metastasis. The analysis was conducted using RNA-seq datasets for both HCC (PRJNA494560 and PRJNA347513) and GBM (PRJNA494560 and PRJNA414787) from Gene Expression Omnibus (GEO). This study identified 13 hub genes found to be overexpressed in both GBM and HCC. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation, causing aneuploidy. A 13-gene predictive model was obtained and validated using a KM plot. These hub genes could be prognostic biomarkers and potential therapeutic targets, inhibition of which could suppress tumorigenesis and metastasis.

6.
Diagnostics (Basel) ; 13(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36980449

RESUMO

Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of death in women. Researchers have discovered an increasing number of molecular targets for BC prognosis and therapy. However, it is still urgent to identify new biomarkers. Therefore, we evaluated biomarkers that may contribute to the diagnosis and treatment of BC. We searched TCGA datasets and identified differentially expressed genes (DEGs) by comparing tumor (100 samples) and non-tumor (100 samples) tissues using the Deseq2 package. Pathway and functional enrichment analysis of the DEGs was performed using the DAVID (Database for Annotation, Visualization, and Integrated Discovery) database. The protein-protein interaction (PPI) network was identified using the STRING database and visualized through Cytoscape software. Hub gene analysis of the PPI network was completed using cytohubba plugins. The associations between the identified genes and overall survival (OS) were analyzed using a Kaplan-Meier plot. Finally, we have identified hub genes at the transcriptome level. A total of 824 DEGs were identified, which were mostly enriched in cell proliferation, signal transduction, and cell division. The PPI network comprised 822 nodes and 12,145 edges. Elevated expression of the five hub genes AURKA, BUB1B, CCNA2, CCNB2, and PBK are related to poor OS in breast cancer patients. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation causing aneuploidy. The enriched functions and pathways included the cell cycle, oocyte meiosis, and the p53 signaling pathway. The identified five hub genes in breast cancer have the potential to become useful targets for the diagnosis and treatment of breast cancer.

7.
Healthcare (Basel) ; 11(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36767006

RESUMO

Radical new possibilities of improved treatment of cancer are on offer from an advanced medical technology already demonstrating its significance: next-generation sequencing (NGS). This refined testing provides unprecedentedly precise diagnoses and permits the use of focused and highly personalized treatments. However, across regions globally, many cancer patients will continue to be denied the benefits of NGS as long as some of the yawning gaps in its implementation remain unattended. The challenges at the regional and national levels are linked because putting the solutions into effect is highly dependent on cooperation between regional- and national-level cooperation, which could be hindered by shortfalls in interpretation or understanding. The aim of the paper was to define and explore the necessary conditions for NGS and make recommendations for effective implementation based on extensive exchanges with policy makers and stakeholders. As a result, the European Alliance for Personalised Medicine (EAPM) developed a maturity framework structured around demand-side and supply-side issues to enable interested stakeholders in different countries to self-evaluate according to a common matrix. A questionnaire was designed to identify the current status of NGS implementation, and it was submitted to different experts in different institutions globally. This revealed significant variability in the different aspects of NGS uptake. Within different regions globally, to ensure those conditions are right, this can be improved by linking efforts made at the national level, where patients have needs and where care is delivered, and at the global level, where major policy initiatives in the health field are underway or in preparation, many of which offer direct or indirect pathways for building those conditions. In addition, in a period when consensus is still incomplete and catching up is needed at a political level to ensure rational allocation of resources-even within individual countries-to enable the best ways to make the necessary provisions for NGS, a key recommendation is to examine where closer links between national and regional actions could complement, support, and mutually reinforce efforts to improve the situation for patients.

8.
Toxics ; 11(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851022

RESUMO

Urbanization and industrialization are responsible for environmental contamination in the air, water, and soil. These activities also generate large amounts of heavy metal ions in the environment, and these contaminants cause various types of health issues in humans and other animals. Hexavalent chromium, lead, and cadmium are toxic heavy metal ions that come into the environment through several industrial processes, such as tanning, electroplating, coal mining, agricultural activities, the steel industry, and chrome plating. Several physical and chemical methods are generally used for the heavy metal decontamination of wastewater. These methods have some disadvantages, including the generation of secondary toxic sludge and high operational costs. Hence, there is a need to develop a cost-effective and eco-friendly method for the removal of heavy metal ions from polluted areas. Biological methods are generally considered eco-friendly and cost-effective. This review focuses on heavy metal contamination, its toxicity, and eco-friendly approaches for the removal of heavy metals from contaminated sites.

9.
Diagnosis (Berl) ; 10(2): 140-157, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548810

RESUMO

OBJECTIVES: The introduction of Personalised Medicine (PM) into healthcare systems could benefit from a clearer understanding of the distinct national and regional frameworks around the world. Recent engagement by international regulators on maximising the use of real-world evidence (RWE) has highlighted the scope for improving the exploitation of the treasure-trove of health data that is currently largely neglected in many countries. The European Alliance for Personalised Medicine (EAPM) led an international study aimed at identifying the current status of conditions. METHODS: A literature review examined how far such frameworks exist, with a view to identifying conducive factors - and crucial gaps. This extensive review of key factors across 22 countries and 5 regions revealed a wide variety of attitudes, approaches, provisions and conditions, and permitted the construction of a comprehensive overview of the current status of PM. Based on seven key pillars identified from the literature review and expert panels, the data was quantified, and on the basis of further analysis, an index was developed to allow comparison country by country and region by region. RESULTS: The results show that United States of America is leading according to overall outcome whereas Kenya scored the least in the overall outcome. CONCLUSIONS: Still, common approaches exist that could help accelerate take-up of opportunities even in the less prosperous parts of the world.


Assuntos
Atenção à Saúde , Medicina , Humanos , Estados Unidos , Atenção à Saúde/métodos , Poder Psicológico
10.
Antioxidants (Basel) ; 11(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36552581

RESUMO

Hexavalent chromium is a highly soluble environmental contaminant. It is a widespread anthropogenic chromium species that is 100 times more toxic than trivalent chromium. Leather, chrome plating, coal mining and paint industries are the major sources of hexavalent chromium in water. Hexavalent chromium is widely recognised as a carcinogen and mutagen in humans and other animals. It is also responsible for multiorgan damage, such as kidney damage, liver failure, heart failure, skin disease and lung dysfunction. The fate of the toxicity of hexavalent chromium depends on its oxidation state. The reduction of Cr (VI) to Cr (III) is responsible for the generation of reactive oxygen species (ROS) and chromium intermediate species, such as Cr (V) and Cr (IV). Reactive oxygen species (ROS) are responsible for oxidative tissue damage and the disruption of cell organelles, such as mitochondria, DNA, RNA and protein molecules. Cr (VI)-induced oxidative stress can be neutralised by the antioxidant system in human and animal cells. In this review, the authors summarise the Cr (VI) source, toxicity and antioxidant defence mechanism against Cr (VI)-induced reactive oxygen species (ROS).

11.
Life (Basel) ; 12(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556458

RESUMO

Soil microbial communities connect to the functional environment and play an important role in the biogeochemical cycle and waste degradation. The current study evaluated the distribution of the core microbial population of garden soil in the Varanasi region of Uttar Pradesh, India and their metabolic potential for mitigating toxic hexavalent chromium from wastewater. Metagenomes contain 0.2 million reads and 56.5% GC content. The metagenomic analysis provided insight into the relative abundance of soil microbial communities and revealed the domination of around 200 bacterial species belonging to different phyla and four archaeal phyla. The top 10 abundant genera in garden soil were Gemmata, Planctomyces, Steroidobacter, Pirellula, Pedomicrobium, Rhodoplanes, Nitrospira Mycobacterium, Pseudonocardia, and Acinetobacter. In this study, Gemmata was dominating bacterial genera. Euryarchaeota, Parvarchaeota, and Crenarchaeota archaeal species were present with low abundance in soil samples. X-ray photoelectric spectroscopy (XPS) analysis indicates the presence of carbon, nitrogen-oxygen, calcium, phosphorous, and silica in the soil. Soil-derived bacterial consortia showed high hexavalent chromium [Cr (VI)] removal efficiency (99.37%). The bacterial consortia isolated from garden soil had an important role in the hexavalent chromium bioremediation, and thus, this study could be beneficial for the design of a heavy-metal treatment system.

12.
Biomed Pharmacother ; 156: 113958, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411639

RESUMO

The central nervous system has essential role in the regulation of the physiological condition of the human body. Gut microbes cause several types of gastrointestinal diseases like ulcer stomach and intestine and irritable bowel syndrome. Microbes present in the human gut can affect brain function by the release of neuroactive metabolites such as neurotransmitters, hormones, and other compounds. Gut microbial-derived metabolites also have an important role in neurological diseases such as Alzheimer's disease, Parkinson's disease, etc. Vital communication between the gut microbes and the central nervous system is known as the microbiota-gut-brain axis. It provides a communication pathway between the gut and brain which is made up of the vagus nerve, immune system components, and neuroendocrine. Disturbance in gut microbiota composition can alter the central nervous system and enteric nervous system functions. Metagenomics has been employed for the identification, and characterization of gut microbes and microbial-derived metabolites. This review is focused on the gut microbes-brain relationship and the role of gut microbes in neurodegenerative diseases. This study is also focused on major metagenomic approaches and their role in gut microbes characterization.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Humanos , Metagenômica , Microbioma Gastrointestinal/genética , Metagenoma , Sistema Nervoso Central
13.
Healthcare (Basel) ; 10(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36360466

RESUMO

Tackling cancer is a major challenge right on the global level. Europe is only the tip of an iceberg of cancer around the world. Prosperous developed countries share the same problems besetting Europe-and the countries and regions with fewer resources and less propitious conditions are in many cases struggling often heroically against a growing tide of disease. This paper offers a view on these geographically wider, but essentially similar, challenges, and on the prospects for and barriers to better results in this ceaseless battle. A series of panels have been organized by the European Alliance for Personalised Medicine (EAPM) to identify different aspects of cancer care around the globe. There is significant diversity in key issues such as NGS, RWE, molecular diagnostics, and reimbursement in different regions. In all, it leads to disparities in access and diagnostics, patients' engagement, and efforts for a better understanding of cancer.

15.
Oxid Med Cell Longev ; 2022: 3012778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092161

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronavirus (HCoV) that has created a pandemic situation worldwide as COVID-19. This virus can invade human cells via angiotensin-converting enzyme 2 (ACE2) receptor-based mechanisms, affecting the human respiratory tract. However, several reports of neurological symptoms suggest a neuroinvasive development of coronavirus. SARS-CoV-2 can damage the brain via several routes, along with direct neural cell infection with the coronavirus. The chronic inflammatory reactions surge the brain with proinflammatory elements, damaging the neural cells, causing brain ischemia associated with other health issues. SARS-CoV-2 exhibited neuropsychiatric and neurological manifestations, including cognitive impairment, depression, dizziness, delirium, and disturbed sleep. These symptoms show nervous tissue damage that enhances the occurrence of neurodegenerative disorders and aids dementia. SARS-CoV-2 has been seen in brain necropsy and isolated from the cerebrospinal fluid of COVID-19 patients. The associated inflammatory reaction in some COVID-19 patients has increased proinflammatory cytokines, which have been investigated as a prognostic factor. Therefore, the immunogenic changes observed in Parkinson's and Alzheimer's patients include their pathogenetic role. Inflammatory events have been an important pathophysiological feature of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's. The neuroinflammation observed in AD has exacerbated the Aß burden and tau hyperphosphorylation. The resident microglia and other immune cells are responsible for the enhanced burden of Aß and subsequently mediate tau phosphorylation and ultimately disease progression. Similarly, neuroinflammation also plays a key role in the progression of PD. Several studies have demonstrated an interplay between neuroinflammation and pathogenic mechanisms of PD. The dynamic proinflammation stage guides the accumulation of α-synuclein and neurodegenerative progression. Besides, few viruses may have a role as stimulators and generate a cross-autoimmune response for α-synuclein. Hence, neurological complications in patients suffering from COVID-19 cannot be ruled out. In this review article, our primary focus is on discussing the neuroinvasive effect of the SARS-CoV-2 virus, its impact on the blood-brain barrier, and ultimately its impact on the people affected with neurodegenerative disorders such as Parkinson's and Alzheimer's.


Assuntos
Doença de Alzheimer , COVID-19 , Doença de Parkinson , Doença de Alzheimer/complicações , COVID-19/complicações , Humanos , Doença de Parkinson/complicações , Peptidil Dipeptidase A , SARS-CoV-2 , alfa-Sinucleína
16.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014390

RESUMO

Natural polyphenols have a wide variety of biological activities and are taken into account as healthcare materials. Resveratrol is one such natural polyphenol, belonging to a group known as stilbenoids (STBs). Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is mainly found in grapes, wine, nuts, and berries. A wide range of biological activities has been demonstrated by resveratrol, including antimicrobial, antioxidant, antiviral, antifungal, and antiaging effects, and many more are still under research. However, as with many other plant-based polyphenol products, resveratrol suffers from low bioavailability once administered in vivo due to its susceptibility to rapid enzyme degradation by the body's innate immune system before it can exercise its therapeutic influence. Therefore, it is of the utmost importance to ensure the best use of resveratrol by creating a proper resveratrol delivery system. Nanomedicine and nanodelivery systems utilize nanoscale materials as diagnostic tools or to deliver therapeutic agents in a controlled manner to specifically targeted locations. After a brief introduction about polyphenols, this review overviews the physicochemical characteristics of resveratrol, its beneficial effects, and recent advances on novel nanotechnological approaches for its delivery according to the type of nanocarrier utilized. Furthermore, the article summarizes the different potential applications of resveratrol as, for example, a therapeutic and disease-preventing anticancer and antiviral agent.


Assuntos
Polifenóis , Estilbenos , Antioxidantes/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas , Polifenóis/farmacologia , Resveratrol , Estilbenos/metabolismo
17.
Front Neurosci ; 15: 777347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970114

RESUMO

Autophagy is an important cellular self-digestion and recycling pathway that helps in maintaining cellular homeostasis. Dysregulation at various steps of the autophagic and endolysosomal pathway has been reported in several neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington disease (HD) and is cited as a critically important feature for central nervous system (CNS) proteostasis. Recently, another molecular target, namely transcription factor EB (TFEB) has been explored globally to treat neurodegenerative disorders. This TFEB, is a key regulator of autophagy and lysosomal biogenesis pathway. Multiple research studies suggested therapeutic potential by targeting TFEB to treat human diseases involving autophagy-lysosomal dysfunction, especially neurodegenerative disorders. A common observation involving all neurodegenerative disorders is their poor efficacy in clearing and recycle toxic aggregated proteins and damaged cellular organelles due to impairment in the autophagy pathway. This dysfunction in autophagy characterized by the accumulation of toxic protein aggregates leads to a progressive loss in structural integrity/functionality of neurons and may even result in neuronal death. In recent years TFEB, a key regulator of autophagy and lysosomal biogenesis, has received considerable attention. It has emerged as a potential therapeutic target in numerous neurodegenerative disorders like AD and PD. In various neurobiology studies involving animal models, TFEB has been found to ameliorate neurotoxicity and rescue neurodegeneration. Since TFEB is a master transcriptional regulator of autophagy and lysosomal biogenesis pathway and plays a crucial role in defining autophagy activation. Studies have been done to understand the mechanisms for TFEB dysfunction, which may yield insights into how TFEB might be targeted and used for the therapeutic strategy to develop a treatment process with extensive application to neurodegenerative disorders. In this review, we explore the role of different transcription factor-based targeted therapy by some natural compounds for AD and PD with special emphasis on TFEB.

18.
Environ Sci Pollut Res Int ; 28(11): 13761-13775, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33196993

RESUMO

Agriculture has the most significant contribution in fulfilling the basic human need, sustaining life, and strengthening the economy of any country. To feed the exploding population of the world, there has been a quantum jump in the production of agricultural commodities, which has led to the production of a substantial considerable quantity of agricultural and agro-industrial wastes. The bulks of these wastes are lignocellulosic in nature and consist of three main polymeric constituents, i.e., cellulose, hemicellulose, and lignin, which are recalcitrant. The primary significant portions of these remain unutilized and are burnt in the field, leading to severe environmental aggression and wastage of resource. Farmers across the globe, including India, burn these agricultural wastes in their thousands of acre land, which contribute to spoiling the air quality index (AQI). This is very harmful, especially to children, pregnant women, old adults, and for patients suffering from respiratory diseases. The current manuscript sets up an agro-waste management platform by using paddy straw as a substrate for the production of nutritionally and medically rich oyster mushroom, Pleurotus florida (Pf) and which is further used in the green synthesis of bimetallic (gold-platinum) Au-Pt nanoparticle. Yield performance and biological efficiency of Pf were calculated from the degraded paddy straw. The green synthesized Au-Pt NPs were structurally characterized by ultraviolet-visible (UV-Vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and zeta potential analysis. The prepared NPs showed a face-centered cubic crystal structure, icosahedral shape with a mean particle size of 16 nm. Furthermore, we examined the cytotoxic activity of Au-Pt NPs using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, intracellular reactive oxygen species (ROS) generation, and apoptosis by propidium iodide assay. We found that Au-Pt NPs exerted apoptotic activity on the human colon cancer cell line (HCT 116) in a dose-dependent manner from 12.5 to 200 µg/mL. Overall, our findings create a prototype and open a new door to synthesizing functional nanoparticle by using oyster mushroom as the substrate for paddy straw agro-waste management and the applicability of Pf in the synthesis of eco-friendly Au-Pt NPs. This is the first kind of approach that kills two birds with one stone.


Assuntos
Nanopartículas Metálicas , Pleurotus , Gerenciamento de Resíduos , Criança , Feminino , Ouro , Humanos , Índia , Gravidez
19.
Biochem Biophys Rep ; 24: 100812, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33083576

RESUMO

In the current scenario of the fight against cancer Integration of potential elements seems to be the best alternative since it overcomes the weaknesses of individuals and the combination of elements makes them formidable in the fight against the cancer war. Inspired by this objective and trusting our knowledge of paddy straw grown oyster mushroom, Pleurotus florida (Pf) mediated synthesis; a first-of-kind approach has been developed for the rapid synthesis of Au-Pt-Ag trimetallic nanoparticles (TMNPs). The developed method was successful, which was confirmed by Ultraviolet-Visible, X-ray diffraction, Transmission Electron Microscopy, Energy Dispersive Spectroscopy. Specifically, prepared TMNPs have been studied for their stability and size as a primary prerequisite for nanomedicine. Finally, the stable nanomedicine developed has been assessed for its performance against the highly metastatic breast cancer cell line (mda-mb-231). The performance was assessed using MTT assay and morphological readings, which were integrated with the cell viability data. We also determined the IC50 value, which was far superior to individual components and motivated us to postulate the possible breast cancer cell killing mechanism of TMNPs. The present study unlocks the new paths for the mushroom-mediated environmentally friendly, economic synthesis of trimetallic nanoparticles, which can be effectively used in cancer nanomedicine.

20.
J Chem Neuroanat ; 110: 101874, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091590

RESUMO

COVID-19 has forsaken the world because of extremely high infection rates and high mortality rates. At present we have neither medicine nor vaccine to prevent this pandemic. Lockdowns, curfews, isolations, quarantines, and social distancing are the only ways to mitigate their infection. This is badly affecting the mental health of people. Hence, there is an urgent need to address this issue. Coronavirus disease 2019 (COVID-19) is caused by a novel Betacorona virus named SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) which has emerged in the city of Wuhan in China and declared a pandemic by WHO since it affected almost all the countries the world, infected 24,182,030 people and caused 825,798 death as per data are compiled from John Hopkins University (JHU). The genome of SARS-CoV-2 has a single-stranded positive (+) sense RNA of ∼30 kb nucleotides. Phylogenetic analysis reveals that SARS-CoV-2 shares the highest nucleotide sequence similarity (∼79 %) with SARS-CoV. Envelope and nucleocapsids are two evolutionary conserved regions of SARS-CoV-2 having a sequence identity of about 96 % and 89.6 %, respectively as compared to SARS-CoV. The characterization of SARS-CoV-2 is based on polymerase chain reaction (PCR) and metagenomic next-generation sequencing. Transmission of this virus in the human occurs through the respiratory tract and decreases the respiration efficiency of lungs. Humans are generally susceptible to SARS-CoV-2 with an incubation period of 2-14 days. The virus first infects the lower airway and bind with angiotensin-converting enzyme 2 (ACE2) of alveolar epithelial cells. Due to the unavailability of drugs or vaccines, it is very urgent to design potential vaccines or drugs for COVID-19. Reverse vaccinology and immunoinformatic play an important role in designing potential vaccines against SARS-CoV-2. The suitable vaccine selects for SARS-CoV-2 based on binding energy between the target protein and the designed vaccine. The stability and activity of the designed vaccine can be estimated by using molecular docking and dynamic simulation approaches. This review mainly focused on the brief up to date information about COVID-19, molecular characterization, pathogen-host interaction pathways involved during COVID-19 infection. It also covers potential vaccine design against COVID-19 by using various computational approaches. SARS-CoV-2 enters brain tissue through the different pathway and harm human's brain and causes severe neurological disruption.


Assuntos
Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Interações Hospedeiro-Patógeno/imunologia , SARS-CoV-2/imunologia , Simulação por Computador , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...