Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 129: 108761, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38552302

RESUMO

ADP-glucose pyrophosphorylase plays a pivotal role as an allosteric enzyme, essential for starch biosynthesis in plants. The higher plant AGPase comparises of a pair of large and a pair of small subunits to form a heterotetrameric complex. Growing evidence indicates that each subunit plays a distinct role in regulating the underlying mechanism of starch biosynthesis. In the rice genome, there are four large subunit genes (OsL1-L4) and three small subunit genes (OsS1, OsS2a, and OsS2b). While the structural assembly of cytosolic rice AGPase subunits (OsL2:OsS2b) has been elucidated, there is currently no such documented research available for plastidial rice AGPases (OsL1:OsS1). In this study, we employed protein modeling and MD simulation approaches to gain insights into the structural association of plastidial rice AGPase subunits. Our results demonstrate that the heterotetrameric association of OsL1:OsS1 is very similar to that of cytosolic OsL2:OsS2b and potato AGPase heterotetramer (StLS:StSS). Moreover, the yeast-two-hybrid results on OsL1:OsS1, which resemble StLS:StSS, suggest a differential protein assembly for OsL2:OsS2b. Thus, the regulatory and catalytic mechanisms for plastidial AGPases (OsL1:OsS1) could be different in rice culm and developing endosperm compared to those of OsL2:OsS2b, which are predominantly found in rice endosperm.


Assuntos
Oryza , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/genética , Endosperma/genética , Endosperma/metabolismo , Simulação por Computador , Amido/metabolismo , Subunidades Proteicas/metabolismo
2.
Materials (Basel) ; 16(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36769942

RESUMO

The purpose of this paper is to determine the best dimple core design for metal sandwich panels by investigating the various critical criteria and core design parameters using the fuzzy-hybrid multi-criteria decision-making tool. The structural integrity of a sandwich panel depends on the core design and significantly affects the bonding strength. The continuous design and testing of a sandwich panel is a very lengthy process that increases the design time. The simulation analysis output was segregated into nine critical failure criteria. All the critical criteria weightages were evaluated using the Fuzzy-Analytical Hierarchical Process, while the Fuzzy-Technique for Order Preference by Similarity to Ideal Solution was used to evaluate the Closeness Coefficient value to determine the best core design configuration. The results indicate that the core configuration with a diameter of 6.0 mm and a depth of 3.0 mm obtained the highest closeness coefficient values, 0.9937 and 0.9294, under cyclic loading conditions of 50% and 70%. It was shown that using average sizes in the dimple configuration tends to provide better delamination resistance and structural integrity. This study contributes to the selection of the optimum core design configuration based on the various design criteria and using non-complex and competent analysis.

3.
Materials (Basel) ; 16(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614795

RESUMO

The aim of this paper is to characterise the fatigue reliability for various random strain loads under extreme value distribution while considering the cycle sequence effect condition in fatigue life prediction. The established strain-life models, i.e., Morrow and Smith-Watson-Topper, considered a mean stress effect and strain amplitude; nevertheless, it excluded the load sequence effect, which involves the fatigue crack closure that is subjected to overload or underload. A FESEM-EDX analysis is conducted to characterise the failure features that occurred on the leaf spring. A finite element is simulated to determine the critical region in order to obtain the strain load behaviour. In addition, the strain signal is captured experimentally at 500 Hz for 100 s under operating conditions for three different road loads based on the critical location obtained from the finite element analysis. The fatigue life correlation shows that the Pearson correlation coefficients are greater than 0.9, which indicates the effective strain damage model is linearly correlated with the strain-life models. The fatigue life data are modelled using extreme value distribution by considering the random strain loads as extreme data. The reliability rate for the fatigue life is reported to be more than 0.59 within the hazard rate range of 9.6 × 10-8 to 1.2 × 10-7 based on the mean cycle to the failure point. Hence, the effective strain damage model is proposed for a fatigue reliability assessment under extreme conditions with higher reliability and provides fatigue life prediction when subjected to cycle sequence effects.

4.
Materials (Basel) ; 16(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676201

RESUMO

This paper presents a modified fatigue life model of the Basquin equation using the stress parameter of the magnetic flux leakage signal. Most pipeline steels experience cyclic loading during service and the influence of the load history makes assessing fatigue behaviour more difficult. The magnetic flux leakage signal's response to a uniaxial cyclic test of API X65 steel was measured with eight levels of ultimate tensile stress loads. The influence of dH(y)/dx on fatigue failure was the main concern in this study, the aim being to represent localised stress parameters in the modified Basquin equation. Both fatigue lives, experimental and predicted from the modified Basquin equation, were validated through reliability analysis, producing a 60% value when approaching 1.8 × 105 cycles. The fatigue data from the experiment produced a higher mean-cycle-to-failure value than the prediction data, with slightly different values of 3.37 × 105 and 3.28 × 105. Additionally, the modified Basquin equation's predicted and the experimental fatigue lives were found to have a high R2 correlation value of 0.9022. The Pearson correlation also showed a good relationship between the fatigue lives, with an r value of 0.9801. Finally, the modified Basquin equation based on dH(y)/dx signals provided an accurate and alternative method for durability assessment.

5.
World J Microbiol Biotechnol ; 37(6): 95, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963452

RESUMO

Huanglongbing (HLB), also known as 'citrus greening', is an extremely destructive disease of citrus worldwide. HLB is associated with three species of the fastidious proteobacterium, Candidatus Liberibacter asiaticus (CaLas), Ca. L. africanus and Ca. L. americanus with CaLas being the most widely distributed around the world and the only species detected and described so far in India, one of the major global citrus fruit producers. Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. Three types of prophages, Type 1, Type 2 and Type 3 have been identified and described in CaLas so far. In the present study, 441 CaLas isolates sampled across 18 Indian states were used for prophage typing. Based on detection of three prophage types by PCR, all the eight probable combinations of CaLas prophages were identified, including single Type 1 (26.5%), single Type 2 (18.8%), single Type 3 (1.4%), Type 1 + Type 2 (20.4%), Type 1 + Type 3 (12.5%), Type 2 + Type 3 (4.8%), Type 1 + Type 2 + Type 3 (11.3%) and None type (4.3%). Prophage types were confirmed by PCR amplicon sequencing and subsequent phylogenetic analysis. By discovery of all 3 prophages and based on genetic identity and genetic distance, CaLas populations from eighteen citrus growing states were separated into two major Prophage Typing Groups (PTGs): PTG1 and PTG2. The PTG1 comprised of CaLas from North-West India and PTG2 from rest of the country (North-East, Central and South India), and both major groups were further divided into two (PTG1-A, PTG1-B) and three (PTG2-A, PTG2-B and PTG2-C) subgroups respectively. The findings of CaLas population patterns provide evidence for independent origins of HLB-associated CaLas. CRISPR (clustered regularly interspaced short palindromic repeats) array was also detected in CaLas isolates. This is the first report evaluating the genetic variation of a large population of CaLas bacterium in India using the PCR markers from the prophage regions which would certainly assist the ongoing HLB management efforts in India.


Assuntos
Citrus/microbiologia , Liberibacter/classificação , Prófagos/genética , Análise de Sequência de DNA/métodos , Sistemas CRISPR-Cas , DNA Viral/genética , Variação Genética , Índia , Liberibacter/isolamento & purificação , Liberibacter/virologia , Tipagem Molecular , Filogenia , Doenças das Plantas/microbiologia , Prófagos/classificação
6.
Polymers (Basel) ; 13(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573112

RESUMO

Moisture absorption tests for materials that exhibit non-Fickian behavior generally require a relatively long period to reach saturation. Therefore, it would be beneficial to establish a relationship between the moisture content and the thickness to minimize the experimental time and cost. This research characterizes the moisture absorption behavior of AS4/8552 carbon/epoxy composites. Specimens were prepared at 4, 8, and 16 plies and immersed in distilled water at 60 °C. The relationship between the non-Fickian parameters (Fickian to non-Fickian maximum moisture content ratio ϕ, non-Fickian diffusivity per square thickness α, and non-Fickian initiation time to) and thickness was characterized using a thickness-dependent model. A comparison with other materials revealed that all three non-Fickian parameters are able to be fitted using a power law. Nevertheless, the upper boundary for the applicability of this model was not determined in this study. The Weibull distribution plots indicate that the probability of non-Fickian moisture absorption is influenced by ϕ and α at approximately 62% within a normalized thickness range of 2-3. In regards to to, it is 82% at a normalized thickness of 6. Therefore, the Weibull distribution is proposed for the assessment of non-Fickian moisture absorption based on the material's thickness.

7.
J Biomol Struct Dyn ; 39(7): 2575-2584, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32367760

RESUMO

Eukaryotic translation initiation factors (eIFs) are the group of regulatory proteins that are involved in the initiation of translation events. Among them, eIF4A1, a member of the DEAD-box RNA helicase family, participates in a wide spectrum of activities which include, RNA splicing, ribosome biogenesis, and RNA degradation. It is well known that ATP-binding and subsequent hydrolysis activities are crucial for the functionality of such helicases. Although the stress-responsive upregulation of eIF4A1 has been reported in plants during stress, it is difficult to anticipate the functionality of the corresponding protein product. Therefore, to understand the activity of eIF4A1 in rice in response to temperature stress, we first conducted an expression analysis of the gene and further investigated the structural stability of the eIF4A1-ATP/Mg2+ complex through molecular dynamics (MD) simulations at different temperature conditions (277 K, 300 K, and 315 K). Our results demonstrated a three to fourfold increased expression of rice eIF4A1 both in root and shoot at 42 °C compared to control. Furthermore, the MD simulation portrayed strong ATP/Mg2+ binding at a higher temperature in comparison to control and cold temperature. Overall, the increased expression pattern of eIF4A1 and strong ATP/Mg2+ binding at higher temperature indicated the heat stress-tolerant capacity of the gene in rice. The results from our study will help in understanding the activity of gene and guide the researchers for screening of novel stress inducible candidate genes for the engineering of temperature stress tolerant plants.Communicated by Ramaswamy H. Sarma.


Assuntos
Fator de Iniciação 4A em Eucariotos , Oryza , Proteínas de Plantas , Fatores de Transcrição , Temperatura Baixa , Simulação de Dinâmica Molecular , Oryza/genética , Temperatura
8.
Plant Cell Physiol ; 62(1): 125-142, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33237266

RESUMO

The plastidial starch phosphorylase (Pho1) functions in starch metabolism. A distinctive structural feature of the higher Pho1 is a 50-82-amino-acid long peptide (L50-L82), which is absent in phosphorylases from non-plant organisms. To study the function of the rice Pho1 L80 peptide, we complemented a pho1- rice mutant (BMF136) with the wild-type Pho1 gene or with a Pho1 gene lacking the L80 region (Pho1ΔL80). While expression of Pho1 in BMF136 restored normal wild-type phenotype, the introduction of Pho1ΔL80 enhanced the growth rate and plant productivity above wild-type levels. Mass spectrometry analysis of proteins captured by anti-Pho1 showed the surprising presence of PsaC, the terminal electron acceptor/donor subunit of photosystem I (PSI). This unexpected interaction was substantiated by reciprocal immobilized protein pull-down assays of seedling extracts and supported by the presence of Pho1 on isolated PSI complexes resolved by blue-native gels. Spectrophotometric studies showed that Pho1ΔL80 plants exhibited modified PSI and enhanced CO2 assimilation properties. Collectively, these findings indicate that the higher plant Pho1 has dual roles as a potential modulator of source and sink processes.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/metabolismo , Amido Fosforilase/metabolismo , Amido/metabolismo , Espectrometria de Massas , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/fisiologia , Plântula/metabolismo , Amido Fosforilase/fisiologia
10.
Plant Pathol J ; 35(6): 644-653, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832044

RESUMO

The genetic variability of 'Candidatus Liberibacter asiaticus' (CLas) population associated with huanglongbing (HLB) disease of citrus in North Eastern (NE) region of India, a geographically locked region, and home for the diversity of many citrus species was analyzed on the basis of tandem repeat numbers (TRN) in variable CLIBASIA_01645 genomic loci. Fifty-five CLas strains sampled from different groves of NE Hill (NEH) region of India were in single amplicon group, but there was remarkable genetic variability in TRNs. The TRN in HLB-associated CLas strains varied from 0-21 and two novel repeat motifs were also identified. Among the NE population of CLas, TRN5 and TRN9 were most frequent (total frequency of 36.36%) followed by TRN4 (14.55%) and TRN6, TNR7 with a frequency of 12.73% each. Class II type CLas genotypes (5 < TRN ≤ 10) had highest prevalence (frequency of 60.00%) in the samples characterized in present study. Class I (TRN ≤ 5) genotypes were second highest prevalent (29.09%) in the NEH region. Further analysis of genetic diversity parameters using Nei's measure (H value) indicated wide genetic diversity in the CLas strains of NE India (H value of 0.58-0.86). Manipur CLas strains had highest genetic variability (0.86) as compared to Eastern, Southern and Central India. The R10 values (TRN ≤ 10/TRN > 10) of NE CLas population was 10.43 (73/7), higher from other regions of India. Present study conclusively reported the occurrence of high genetic variability in TRN of CLas population in North East Indian citrus groves which have evolved to adapt to the specific ecological niche.

11.
Front Plant Sci ; 10: 70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804963

RESUMO

Rice grains accumulate starch as their major storage reserve whose biosynthesis is sensitive to heat. ADP-glucose pyrophosphorylase (AGPase) is among the starch biosynthetic enzymes severely affected by heat stress during seed maturation. To increase the heat tolerance of the rice enzyme, we engineered two dominant AGPase subunits expressed in developing endosperm, the large (L2) and small (S2b) subunits of the cytosol-specific AGPase. Bacterial expression of the rice S2b with the rice L2, potato tuber LS (pLS), or with the mosaic rice-potato large subunits, L2-pLS and pLS-L2, produced heat-sensitive recombinant enzymes, which retained less than 10% of their enzyme activities after 5 min incubation at 55°C. However, assembly of the rice L2 with the potato tuber SS (pSS) showed significantly increased heat stability comparable to the heat-stable potato pLS/pSS. The S2b assembled with the mosaic L2-pLS subunit showed 3-fold higher sensitivity to 3-PGA than L2/S2b, whereas the counterpart mosaic pLS-L2/S2b showed 225-fold lower sensitivity. Introduction of a QTC motif into S2b created an N-terminal disulfide linkage that was cleaved by dithiothreitol reduction. The QTC enzyme showed moderate heat stability but was not as stable as the potato AGPase. While the QTC AGPase exhibited approximately fourfold increase in 3-PGA sensitivity, its substrate affinities were largely unchanged. Random mutagenesis of S2bQTC produced six mutant lines with elevated production of glycogen in bacteria. All six lines contained a L379F substitution, which conferred enhanced glycogen production in bacteria and increased heat stability. Modeled structure of this mutant enzyme revealed that this highly conserved leucine residue is located in the enzyme's regulatory pocket that provides interaction sites for activators and inhibitors. Our molecular dynamic simulation analysis suggests that introduction of the QTC motif and the L379F mutation improves enzyme heat stability by stabilizing their backbone structures possibly due to the increased number of H-bonds between the small subunits and increased intermolecular interactions between the two SSs and two LSs at elevated temperature.

12.
Plant Physiol ; 170(3): 1271-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26754668

RESUMO

Previous studies showed that efforts to further elevate starch synthesis in rice (Oryza sativa) seeds overproducing ADP-glucose (ADPglc) were prevented by processes downstream of ADPglc synthesis. Here, we identified the major ADPglc transporter by studying the shrunken3 locus of the EM1093 rice line, which harbors a mutation in the BRITTLE1 (BT1) adenylate transporter (OsBt1) gene. Despite containing elevated ADPglc levels (approximately 10-fold) compared with the wild-type, EM1093 grains are small and shriveled due to the reduction in the amounts and size of starch granules. Increases in ADPglc levels in EM1093 were due to their poor uptake of ADP-[(14)C]glc by amyloplasts. To assess the potential role of BT1 as a rate-determining step in starch biosynthesis, the maize ZmBt1 gene was overexpressed in the wild-type and the GlgC (CS8) transgenic line expressing a bacterial glgC-TM gene. ADPglc transport assays indicated that transgenic lines expressing ZmBT1 alone or combined with GlgC exhibited higher rates of transport (approximately 2-fold), with the GlgC (CS8) and GlgC/ZmBT1 (CS8/AT5) lines showing elevated ADPglc levels in amyloplasts. These increases, however, did not lead to further enhancement in seed weights even when these plant lines were grown under elevated CO2. Overall, our results indicate that rice lines with enhanced ADPglc synthesis and import into amyloplasts reveal additional barriers within the stroma that restrict maximum carbon flow into starch.


Assuntos
Adenosina Difosfato Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Genes de Plantas , Proteínas Facilitadoras de Transporte de Glucose/genética , Mutação , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/metabolismo , Zea mays/enzimologia , Zea mays/genética
13.
Planta ; 243(4): 999-1009, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748915

RESUMO

MAIN CONCLUSION: Consistent with its essential role in starch biosynthesis at low temperatures, the plastidial starch phosphorylase from rice endosperm is highly active at low temperature. Moreover, contrary to results on other higher plant phosphorylases, the L80 peptide, a domain unique to plant phosphorylases and not present in orthologous phosphorylases from other organisms, is not involved in enzyme catalysis. Starch phosphorylase (Pho) is an essential enzyme in starch synthesis in developing rice endosperm as the enzyme plays a critical role in both the early and maturation phases of starch granule formation especially at low temperature. In this study, we demonstrated that the rice Pho1 maintains substantial enzyme activity at low temperature (<20 °C) and its substrate affinities for branched α-glucans and glucose-1-phosphate were significantly increased at the lower reaction temperatures. Under sub-saturating substrate conditions, OsPho1 displayed higher catalytic activities at 18 °C than at optimal 36 °C, supporting the prominent role of the enzyme in starch synthesis at low temperature. Removal of the highly charged 80-amino acid sequence L80 peptide, a region found exclusively in the plastidial Pho1 of higher plants, did not significantly alter the catalytic and regulatory properties of OsPho1 but did affect heat stability. Our kinetic results support the low temperature biosynthetic role of OsPho1 in rice endosperm and indicate that its L80 region is unlikely to have a direct enzymatic role but provides stability of the enzyme under heat stress.


Assuntos
Endosperma/enzimologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Amido Fosforilase/metabolismo , Catálise , Proteínas de Plantas/genética , Plastídeos/enzimologia , Domínios Proteicos , Amido Fosforilase/genética , Temperatura
14.
Plant J ; 55(3): 443-54, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18410482

RESUMO

Previous studies have demonstrated that the major storage protein RNAs found in the rice endosperm are transported as particles via actomyosin to specific subdomains of the cortical endoplasmic reticulum. In this study, we examined the potential role of OsTudor-SN, a major cytoskeletal-associated RNA binding protein, in RNA transport and localization. OsTudor-SN molecules occur as high-molecular-weight forms, the integrity of which are sensitive to RNase. Immunoprecipitation followed by RT-PCR showed that OsTudor-SN binds prolamine and glutelin RNAs. Immunofluorescence studies using affinity-purified antibodies show that OsTudor-SNs exists as particles in the cytoplasm, and are distributed to both the protein body endoplasmic reticulum (ER) and cisternal ER. Examination of OsTudor-SN particles in transgenic rice plants expressing GFP-tagged prolamine RNA transport particles showed co-localization of OsTudor-SN and GFP, suggesting a role in RNA transport. Consistent with this view, GFP-tagged OsTudor-SN is observed in living endosperm sections as moving particles, a property inhibited by microfilament inhibitors. Downregulation of OsTudor-SN by antisense and RNAi resulted in a decrease in steady state prolamine RNA and protein levels, and a reduction in the number of prolamine protein bodies. Collectively, these results show that OsTudor-SN is a component of the RNA transport particle, and may control storage protein biosynthesis by regulating one or more processes leading to the transport, localization and anchoring of their RNAs to the cortical ER.


Assuntos
Citoplasma/metabolismo , Proteínas dos Microtúbulos/fisiologia , Oryza/metabolismo , Proteínas de Plantas/fisiologia , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/análise , Proteínas dos Microtúbulos/antagonistas & inibidores , Proteínas dos Microtúbulos/química , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prolaminas , Interferência de RNA , Transporte de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas Recombinantes de Fusão/análise , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
15.
Plant Cell ; 15(10): 2265-72, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14523246

RESUMO

Prolamine and glutelin RNAs are localized to two subdomains of the cortical endoplasmic reticulum (ER), the protein body ER and the cisternal ER, in developing rice seeds. The addition of nearly full-length prolamine sequences at the 3' untranslated region of a reporter RNA redirects its localization from the cisternal ER to the protein body ER. Deletion analysis of prolamine RNA sequences indicates the presence of two partially redundant cis elements required for protein body ER targeting. The addition of glutelin 3' untranslated region to protein body ER cis sequences, however, redirects RNA localization to the cisternal ER. These results indicate that there are at least two regulated RNA transport pathways as well as a constitutive pathway to the cortical ER.


Assuntos
Retículo Endoplasmático/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , RNA de Plantas/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , DNA Complementar/química , DNA Complementar/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Prolaminas , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/metabolismo
16.
Plant Cell ; 15(10): 2253-64, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14508010

RESUMO

RNAs that code for the major rice storage proteins are localized to specific subdomains of the cortical endoplasmic reticulum (ER) in developing endosperm. Prolamine RNAs are localized to the ER and delimit the prolamine intracisternal inclusion granules (PB-ER), whereas glutelin RNAs are targeted to the cisternal ER. To study the transport of prolamine RNAs to the surface of the prolamine protein bodies in living endosperm cells, we adapted a two-gene system consisting of green fluorescent protein (GFP) fused to the viral RNA binding protein MS2 and a hybrid prolamine RNA containing tandem MS2 RNA binding sites. Using laser scanning confocal microscopy, we show that the GFP-labeled prolamine RNAs are transported as particles that move at an average speed of 0.3 to 0.4 microm/s. These prolamine RNA transport particles generally move unidirectionally in a stop-and-go manner, although nonlinear bidirectional, restricted, and nearly random movement patterns also were observed. Transport is dependent on intact microfilaments, because particle movement is inhibited rapidly by the actin filament-disrupting drugs cytochalasin D and latrunculin B. Direct evidence was obtained that these prolamine RNA-containing particles are transported to the prolamine protein bodies. The significance of these results with regard to protein synthesis in plants is discussed.


Assuntos
Oryza/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Genes Reporter , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Prolaminas , Transporte Proteico , RNA Mensageiro/genética , Nicotiana/genética
17.
Phytochemistry ; 59(3): 261-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11830133

RESUMO

Four cDNA clones encoding two large subunits and two small subunits of the starch regulatory enzyme ADP-glucose pyrophosphorylase (AGPase) were isolated from a chickpea (Cicer arietinum L.) stem cDNA library. DNA sequence and Southern blot analyses of these clones, designated CagpL1, CagpL2 (large subunits) and CagpS1 and CagpS2 (small subunits), revealed that these isoforms represented different AGPase large and small subunits. RNA expression analysis indicated that CagpL1 was expressed strongly in leaves with reduced expression in the stem. No detectable expression was observed in seeds and roots. CagpL2 was expressed moderately in seeds followed by weak expression in leaves, stems and roots. Similar analysis showed that CagpS1 and CagpS2 displayed a spatial expression pattern similar to that observed for CagpL2 with the exception that CagpS1 showed a much higher expression in seeds than CagpS2. The spatial expression patterns of these different AGPase subunit sequences indicate that different AGPase isoforms are used to control starch biosynthesis in different organs during chickpea development.


Assuntos
Cicer/genética , Nucleotidiltransferases/genética , Sequência de Aminoácidos , Sequência de Bases , Southern Blotting , Cicer/enzimologia , Clonagem Molecular , Primers do DNA , DNA Complementar , Glucose-1-Fosfato Adenililtransferase , Dados de Sequência Molecular , Nucleotidiltransferases/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...