Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Front Nutr ; 11: 1342881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694227

RESUMO

Pesticides play a crucial role in modern agriculture, aiding in the protection of crops from pests and diseases. However, their indiscriminate use has raised concerns about their potential adverse effects on human health and the environment. Pesticide residues in food and water supplies are a serious health hazards to the general public since long-term exposure can cause cancer, endocrine disruption, and neurotoxicity, among other health problems. In response to these concerns, researchers and health professionals have been exploring alternative approaches to mitigate the toxic effects of pesticide residues. Bioactive substances called nutraceuticals that come from whole foods including fruits, vegetables, herbs, and spices have drawn interest because of their ability to mitigate the negative effects of pesticide residues. These substances, which include minerals, vitamins, antioxidants, and polyphenols, have a variety of biological actions that may assist in the body's detoxification and healing of harm from pesticide exposure. In this context, this review aims to explore the potential of nutraceutical interventions as a promising strategy to mitigate the toxic effects of pesticide residues.

2.
ACS Appl Bio Mater ; 7(5): 3061-3085, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38581388

RESUMO

Carvedilol (CVD), an adrenoreceptor blocker, is a hydrophobic Biopharmaceutics Classification System class II drug with poor oral bioavailability due to which frequent dosing is essential to attain pharmacological effects. Quercetin (QC), a polyphenolic compound, is a potent natural antioxidant, but its oral dosing is restricted due to poor aqueous solubility and low oral bioavailability. To overcome the common limitations of both drugs and to attain synergistic cardioprotective effects, we formulated CVD- and QC-encapsulated cationic nanoliposomes (NLPs) in situ gel (CVD/QC-L.O.F.) for intranasal administration. We designed CVD- and QC-loaded cationic nanoliposomal (NLPs) in situ gel (CVD/QC-L.O.F.) for intranasal administration. In vitro drug release studies of CVD/QC-L.O.F. (16.25%) exhibited 18.78 ± 0.57% of QC release and 91.38 ± 0.93% of CVD release for 120 h. Ex vivo nasal permeation studies of CVD/QC-L.O.F. demonstrated better permeation of QC (within 96 h), i.e., 75.09% compared to in vitro drug release, whereas CVD permeates within 48 h, indicating the better interaction between cationic NLPs and the negatively charged biological membrane. The developed nasal gel showed a sufficient mucoadhesive property, good spreadability, higher firmness, consistency, and cohesiveness, indicating suitability for membrane application and intranasal administration. CVD-NLPs, QC-NLPs, and CVD/QC-NLPs were evaluated for in vitro cytotoxicity, in vitro ROS-induced cell viability assessment, and a cellular uptake study using H9c2 rat cardiomyocytes. The highest in vitro cellular uptake of CVD/QC-cationic NLPs by H9c2 cells implies the benefit of QC loading within the CVD nanoliposomal carrier system and gives evidence for better interaction of NLPs carrying positive charges with the negatively charged biological cells. The in vitro H2O2-induced oxidative stress cell viability assessment of H9c2 cells established the intracellular antioxidant activity and cardioprotective effect of CVD/QC-cationic NLPs with low cytotoxicity. These findings suggest the potential of cationic NLPs as a suitable drug delivery carrier for CVD and QC combination for the intranasal route in the treatment of various cardiovascular diseases like hypertension, angina pectoris, etc. and for treating neurodegenerative disorders.


Assuntos
Administração Intranasal , Carvedilol , Lipossomos , Nanopartículas , Tamanho da Partícula , Quercetina , Carvedilol/química , Carvedilol/farmacologia , Carvedilol/administração & dosagem , Quercetina/química , Quercetina/administração & dosagem , Quercetina/farmacologia , Lipossomos/química , Animais , Nanopartículas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Ratos , Cátions/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos
3.
Microbiol Res ; 279: 127553, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007891

RESUMO

The plant rhizosphere is regarded as a microbial hotspot due to a wide array of root exudates. These root exudates comprise diverse organic compounds such as phenolic, polysaccharides, flavonoids, fatty acids, and amino acids that showed chemotactic responses towards microbial communities and mediate significant roles in root colonization. The rhizospheric microbiome is a crucial driver of plant growth and productivity, contributing directly or indirectly by facilitating nutrient acquisition, phytohormone modulation, and phosphate solubilization under normal and stressful conditions. Moreover, these microbial candidates protect plants from pathogen invasion by secreting antimicrobial and volatile organic compounds. To enhance plant fitness and yield, rhizospheric microbes are frequently employed as microbial inoculants. However, recent developments have shifted towards targeted rhizosphere engineering or microbial recruitments as a practical approach to constructing desired plant rhizospheres for specific outcomes. The rhizosphere, composed of plants, microbes, and soil, can be modified in several ways to improve inoculant efficiency. Rhizosphere engineering is achieved through three essential mechanisms: a) plant-mediated modifications involving genetic engineering, transgenics, and gene editing of plants; b) microbe-mediated modifications involving genetic alterations of microbes through upstream or downstream methodologies; and c) soil amendments. These mechanisms shape the rhizospheric microbiome, making plants more productive and resilient under different stress conditions. This review paper comprehensively summarizes the various aspects of rhizosphere engineering and their potential applications in maintaining plant health and achieving optimum agricultural productivity.


Assuntos
Raízes de Plantas , Rizosfera , Agricultura/métodos , Plantas , Solo/química , Microbiologia do Solo
4.
ACS Omega ; 8(47): 44611-44623, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046299

RESUMO

The objective of the research was to identify significant variables that impact the porosity-related properties of CaCO3 particles. The Placket-Burman design was employed to screen multiple variables, including pH, molar concentrations of calcium chloride and sodium carbonate, temperature, concentration of Gelucire 44/14, Cremophor RH40, Solutol HS15, Labrasol, mixing rate, reaction time, and order of addition. The response variables were surface area, pore radius, and pore volume. Influential methodologies such as XRD, FTIR, Raman spectroscopy, and TGA were utilized to validate the precipitate type. The BET surface area ranged from 1.5 to 16.14 m2/g, while the pore radius varied from 2.62 to 6.68 nm, and the pore volume exhibited a range of 2.43 to 37.97 cc/gm. Vaterite structures with spherical mesoporous characteristics were observed at high pH, whereas calcite formations occurred at low pH. The order of addition impacted the surface area but did not affect the pore volume. To maximize the surface area, a lower reaction time and molar concentrations of sodium carbonate were found to be advantageous. The pore radius was influenced by the pH, surfactants, and reaction conditions. The sediments were categorized based on the percentage of vaterite formation. The instrumental techniques effectively characterized the precipitates and provided a valuable complementary analysis.

5.
ACS Omega ; 8(48): 45942-45951, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075814

RESUMO

This work highlighted the counterion association of diphenhydramine hydrochloride (DPC) and chlorpheniramine maleate (CPM) with anionic sodium tetradecyl sulfate (STS) by conductivity, fluorescence, and UV spectrophotometer measurements. The presence of drugs and the formation of premicellar aggregates of STS were highlighted. The modified Corrin-Harkins CH approaches assessed the STS counterion binding values B = 0.300 for DPC and 0.379 for CPM in the aqueous media at 25 °C. The counterion binding constant (ßc) and Gibb's free energy of micellization (ΔGmic°) were increased and became more negative, suggesting that the drug-surfactant interaction was controlled by electrostatic interaction. Furthermore, the spectral study evaluated that the three isosbestic points for CPM and one isosbestic point for DPC in the STS micelles were observed, which confirmed that CPM was more binding than DPC with the STS micelles. The differential absorbance spectra study was applied to UV spectra to determine the binding constants (Kb) of 2.232 and 2.837 and partition coefficients (Kx) of 286.64 and 3209.21 for DPC and CPM in the presence of STS micelles. The findings demonstrated that the CPM molecules have been associated with the Palisade layer of the STS micelles, and the DPC molecules were bound to the Stern layer of the STS micelles. Finally, we came to the conclusion that ionic drugs could improve the micellization capabilities of surfactants, which might be useful for choosing the best excipients for pharmaceutical applications.

6.
J Alzheimers Dis ; 96(3): 877-912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927255

RESUMO

Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.


Assuntos
Doença de Alzheimer , Antioxidantes , Humanos , Idoso , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Doença de Alzheimer/patologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Oxirredução
8.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833980

RESUMO

The master molecular regulators and mechanisms determining longevity and health span include nitric oxide (NO) and superoxide anion radicals (SOR). L-arginine, the NO synthase (NOS) substrate, can restore a healthy ratio between the dangerous SOR and the protective NO radical to promote healthy aging. Antioxidant supplementation orchestrates protection against oxidative stress and damage-L-arginine and antioxidants such as vitamin C increase NO production and bioavailability. Uncoupling of NO generation with the appearance of SOR can be induced by asymmetric dimethylarginine (ADMA). L-arginine can displace ADMA from the site of NO formation if sufficient amounts of the amino acid are available. Antioxidants such as ascorbic acids can scavenge SOR and increase the bioavailability of NO. The topics of this review are the complex interactions of antioxidant agents with L-arginine, which determine NO bioactivity and protection against age-related degeneration.


Assuntos
Antioxidantes , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Antioxidantes/farmacologia , Longevidade , Óxido Nítrico Sintase/metabolismo , Arginina/metabolismo
9.
Environ Monit Assess ; 195(8): 1010, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523098

RESUMO

Water constitutes an essential part of the earth as it helps in making the environment greener and support life. But water quality and availability are drastically affected by rising water pollution and its poor sanitation. Water gets contaminated due to the excessive use of chemicals by the industries, fertilizers, and pesticides by the farmers. Not only the surface water, groundwater and river water are also getting contaminated. Several published work in Indian context have used different models for the prediction of water quality. Some of them performed poorly due to the presence of irrelevant and missing data in the training samples. Moreover, these studies have assessed water quality on the basis of biochemical oxygen demand (BOD) and coliform and chemical oxygen demand (COD), whereas dissolved oxygen(DO) is one of the most important parameters in terms of water quality assessment as it is considered a key determinant of pollution. Thus, there is a strong need to categorically identify and visualize the DO as one of the key components responsible for deteriorating the quality of water in Indian context. The main objective of this work is to build a wavelet genetic programming (WGP)-based workflow model for the assessment of water quality in 13 rivers of Uttar Pradesh region. WGP model has a unique feature of discarding the redundant and irrelevant data values from the source data. The proposed WGP model has given promising results which can be attributed to two factors: firstly, the novel use of Morlet wavelet in place of the widely popular Db wavelet, as the mother wavelet, and secondly, the use of MICE technique for missing value imputation in the pre-processing stage. The proposed model not only cleans the data but also demonstrates the feasibility of using DO values as one of the prime factors to assess the water quality.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Poluição da Água/análise , Análise da Demanda Biológica de Oxigênio , Água Doce , Rios , Poluentes Químicos da Água/análise
10.
ACS Omega ; 8(28): 25515-25524, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483176

RESUMO

This study aimed to prepare colloidosome particles loaded with pyrazinamide (PZA). These drug-loaded colloidosomes were prepared using an in situ gelation technique using a central composite design with a shell made of calcium carbonate (CaCO3) particles. Optimal amounts of 150 mg of CaCO3, sodium alginate (2%), and 400 mg of poly(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) concentration resulted in the maximum drug loading and efficient release profile. Field emission scanning electron microscopy results showed spherical porous particles with a good coating of the PHBV polymer. Additionally, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric and differential thermal analysis (TGA-DTA), and X-ray diffraction (XRD) analysis showed good compatibility between the drug and excipients. The pharmacokinetic studies demonstrated that the drug-loaded colloidosomes resulted in 4.26 times higher plasma drug concentrations with Cmax values of 32.386 ± 2.744 mcg/mL (PZA solution) and 115.868 ± 53.581 mcg/mL (PZA-loaded colloidosomes) and AUC0-t values of 61.24 mcg-h/mL (PZA solution) and 260.9 mcg-h/mL (PZA-loaded colloidosomes), indicating that colloidosomes have the potential to be effective drug carriers for delivering PZA to the target site.

11.
Plants (Basel) ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447041

RESUMO

The considerable loss of crop productivity each year due to plant disease or pathogen invasion during pre- or post-harvest storage conditions is one of the most severe challenges to achieving the goals of food security for the rising global population. Although chemical pesticides severally affect the food quality and health of consumers, a large population relies on them for plant disease management. But currently, endophytes have been considered one of the most suitable biocontrol agents due to better colonization and acclimatization potential. However, a very limited number of endophytes have been used commercially as biocontrol agents. Isolation of endophytes and their screening to represent potential characteristics as biocontrol agents are considered challenging by different procedures. Through a web search using the keywords "endophytes as biocontrol agents" or "biocontrol mechanism of endophytes," we have succinctly summarised the isolation strategies and different in vitro and in vivo biocontrol screening methods of endophytic biocontrol agents in the present review. In this paper, biocontrol mechanisms of endophytes and their potential application in plant disease management have also been discussed. Furthermore, the registration and regulatory mechanism of the endophytic biocontrol agents are also covered.

12.
Medicina (Kaunas) ; 59(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37374226

RESUMO

Metabolic syndrome is a multifaceted pathophysiologic condition that is largely caused by an imbalance between caloric intake and energy expenditure. The pathogenesis of metabolic syndrome is determined by an individual's genetic/epigenetics and acquired factors. Natural compounds, notably plant extracts, have antioxidant, anti-inflammatory, and insulin-sensitizing properties and are considered to be a viable option for metabolic disorder treatment due to their low risk of side effects. However, the limited solubility, low bioavailability, and instability of these botanicals hinder their performance. These specific limitations have prompted the need for an efficient system that reduces drug degradation and loss, eliminates unwanted side effects, and boosts drug bioavailability, as well as the percentage of the drug deposited in the target areas. The quest for an enhanced (effective) drug delivery system has led to the formation of green-engineered nanoparticles, which has increased the bioavailability, biodistribution, solubility, and stability of plant-based products. The unification of plant extracts and metallic nanoparticles has helped in the development of new therapeutics against metabolic disorders such as obesity, diabetes mellitus, neurodegenerative disorders, non-alcoholic fatty liver, and cancer. The present review outlines the pathophysiology of metabolic diseases and their cures with plant-based nanomedicine.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Doenças Metabólicas , Síndrome Metabólica , Nanopartículas Metálicas , Nanopartículas , Humanos , Distribuição Tecidual , Nanopartículas/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
13.
J Fungi (Basel) ; 9(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37233278

RESUMO

Microbial degradation is an effective, eco-friendly and sustainable approach for management of the rice residue. After harvesting a rice crop, removal of stubble from the ground is a challenging task, that forces the farmers to burn the residue in-situ. Therefore, accelerated degradation using an eco-friendly alternative is a necessity. White rot fungi are the most explored group of microbes for accelerated degradation of lignin but they are very slow in growth. The present investigation focuses on degradation of rice stubble using a fungal consortium constructed with highly sporulating ascomycetes fungi, namely, Aspergillus terreus, Aspergillus fumigatus and Alternaria spp. All three species were successful at colonizing the rice stubble. Periodical HPLC analysis of rice stubble alkali extracts revealed that incubation with ligninolytic consortium released various lignin degradation products such as vanillin, vanillic acid, coniferyl alcohol, syringic acid and ferulic acid. The efficiency of the consortium was further studied at different dosages on paddy straw. Maximum lignin degradation was observed when the consortium was applied at 15% volume by weight of rice stubble. Maximum activity of different lignolytic enzymes such as lignin peroxidase, laccase and total phenols was also found with the same treatment. FTIR analysis also supported the observed results. Hence, the presently developed consortium for degrading rice stubble was found to be effective in both laboratory and field conditions. The developed consortium or its oxidative enzymes can be used alone or combined with other commercial cellulolytic consortia to manage the accumulating rice stubble effectively.

14.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176144

RESUMO

In the central nervous system (CNS) there are a greater number of glial cells than neurons (between five and ten times more). Furthermore, they have a greater number of functions (more than eight functions). Glia comprises different types of cells, those of neural origin (astrocytes, radial glia, and oligodendroglia) and differentiated blood monocytes (microglia). During ontogeny, neurons develop earlier (at fetal day 15 in the rat) and astrocytes develop later (at fetal day 21 in the rat), which could indicate their important and crucial role in the CNS. Analysis of the phylogeny reveals that reptiles have a lower number of astrocytes compared to neurons and in humans this is reversed, as there have a greater number of astrocytes compared to neurons. These data perhaps imply that astrocytes are important and special cells, involved in many vital functions, including memory, and learning processes. In addition, astrocytes are involved in different mechanisms that protect the CNS through the production of antioxidant and anti-inflammatory proteins and they clean the extracellular environment and help neurons to communicate correctly with each other. The production of inflammatory mediators is important to prevent changes in brain homeostasis. On the contrary, excessive, or continued production appears as a characteristic element in many diseases, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and in neurodevelopmental diseases, such as bipolar disorder, schizophrenia, and autism. Furthermore, different drugs and techniques have been developed to reverse oxidative stress and/or excess of inflammation that occurs in many CNS diseases, but much remains to be investigated. This review attempts to highlight the functional relevance of astrocytes in normal and neuropathological conditions by showing the molecular and cellular mechanisms of their role in the CNS.


Assuntos
Doença de Alzheimer , Astrócitos , Humanos , Ratos , Animais , Astrócitos/patologia , Neuroglia/patologia , Neurônios/patologia , Microglia/fisiologia , Doença de Alzheimer/patologia
15.
ACS Omega ; 8(13): 12456-12466, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033804

RESUMO

In the present study, we developed and validated a rapid, specific, sensitive, and reproducible liquid chromatography-electrospray ionization tandem mass spectrometry method for quantifying quercetin (QT) in rabbit plasma using hydrochlorothiazide as the internal standard. Animals were orally administered with optimized QT-loaded nanoemulsion (QTNE) and QT suspension (QTS), equivalent to 30 mg/kg, to the test and control group, respectively. The blood samples were collected at pre-determined time points up to 48 h. The linearity range was from 5 to 5000 ng mL-1 with R 2 = 0.995. Further, we analyzed the various pharmacokinetic parameters and established the in vitro-in vivo correlation (IVIVC) of QTNE using GastroPlus software. The method was successfully developed and validated, and when applied for the determination of QT in rabbit plasma, it exhibited an increase in C max from 122.56 ng mL-1 (QTS) to 286.51 ng mL-1 (QTNE) (2.34-fold) and AUC0-48 from 976 ng h mL-1 (QTS) to 4249 ng h mL-1 (QTNE) (4.35-fold), indicating improved oral bioavailability QT when administered as QTNE. Statistical analysis revealed that the Loo-Riegelman method (two-compartmental method) best fitted the deconvolution approach (R 2 = 0.998, SEP = 4.537, MAE = 2.759, and AIC = 42.38) for establishing the IVIVC. In conclusion, the established bioanalytical method and IVIVC studies revealed that QTNE is a potential carrier for the effective delivery of QT with enhanced oral bioavailability.

17.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108272

RESUMO

This editorial summarizes the eight articles that have been collected for the Special Issue entitled "Tryptophan in Nutrition and Health 2 [...].


Assuntos
Estado Nutricional , Triptofano
18.
Microorganisms ; 11(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110422

RESUMO

Flavonoids encompass a heterogeneous group of secondary metabolites with exceptional health benefits. Chrysin, a natural dihydroxyflavone, possesses numerous bioactive properties, such as anticancer, antioxidative, antidiabetic, anti-inflammatory, etc. However, using traditional sources of chrysin involves extracting honey from plants, which is non-scalable, unsustainable, and depends on several factors, including geography, climatic conditions, and the season, which limits its production at a larger scale. Recently, microbial production of desirable metabolites has garnered attention due to the cost-effectiveness, easy scale-up, sustainability, and low emission of waste. We previously reported for the first time the chrysin-producing marine endophytic fungus Chaetomium globosum, associated with a marine green alga. To extend our understanding of chrysin biosynthesis in C. globosum, in the present study, we have assessed the presence of flavonoid pathway intermediates in C. globosum extracts using LC-MS/MS. The presence of several key metabolites, such as dihydrokaempferol, chalcone, galangin, baicalein, chrysin, p-Coumaroyl-CoA, and p-Cinnamoyl-CoA, indicates the role of flavonoid biosynthesis machinery in the marine fungus. Further, we have aimed to enhance the production of chrysin with three different strategies: (1) optimizing the fermentation parameters, namely, growth medium, incubation time, pH, and temperature; (2) feeding key flavonoid pathway intermediates, i.e., phenylalanine and cinnamic acid; (3) elicitation with biotic elicitors, such as polysaccharide, yeast extract, and abiotic elicitors that include UV radiation, salinity, and metal stress. The combined effect of the optimized parameters resulted in a 97-fold increase in the chrysin yield, resulting in a fungal cell factory. This work reports the first approach for enhanced production of chrysin and can serve as a template for flavonoid production enhancement using marine endophytic fungi.

19.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37111244

RESUMO

Cannabidiol (CBD), one of the most promising constituents isolated from Cannabis sativa, exhibits diverse pharmacological actions. However, the applications of CBD are restricted mainly due to its poor oral bioavailability. Therefore, researchers are focusing on the development of novel strategies for the effective delivery of CBD with improved oral bioavailability. In this context, researchers have designed nanocarriers to overcome limitations associated with CBD. The CBD-loaded nanocarriers assist in improving the therapeutic efficacy, targetability, and controlled biodistribution of CBD with negligible toxicity for treating various disease conditions. In this review, we have summarized and discussed various molecular targets, targeting mechanisms and types of nanocarrier-based delivery systems associated with CBD for the effective management of various disease conditions. This strategic information will help researchers in the establishment of novel nanotechnology interventions for targeting CBD.

20.
Plants (Basel) ; 12(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36771602

RESUMO

The Western Ghats, India, is a hotspot for lichen diversity. However, the pharmacological importance of lichen-associated metabolites remains untapped. This study aimed to evaluate the cytotoxic potential of lichens of this region. For this, sixteen macrolichens were collected and identified from two locations in the Western Ghats. The acetone extract of Usnea cornuta (UC2A) showed significant cytotoxicity towards multiple human cancer cell lines. Interestingly, co-treatment with chloroquine (CQ), an autophagy inhibitor, increased the cytotoxic potential of the UC2A extract. A gas chromatography mass spectrometry (GCMS) study revealed usnic acid (UA), atraric acid and barbatic acid as the dominant cytotoxic compounds in the UC2A extract. Further, UA was purified and identified from the UC2A extract and evaluated for cytotoxicity in HeLa cells. The monodansyl cadaverine and mitotracker red double staining revealed the autophagy-inducing activities of UA, and the inhibition of autophagy was confirmed via CQ treatment. Autophagy inhibition increased the cytotoxicity of UA by 12-16% in a concentration-dependent manner. It also increased lipid peroxidation, ROS levels and mitochondrial depolarization and decreased glutathione availability. A decrease in zeta potential and a 40% increase in caspase 3/7 activity were also noted after CQ treatment of UA-treated cells. Thus, cytotoxicity of UA can be increased by inhibiting autophagy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...