Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731599

RESUMO

There is continuing research in the area of structural health monitoring (SHM) as it may allow a reduction in maintenance costs as well as lifetime extension. The search for a low-cost health monitoring system that is able to detect small levels of damage is still on-going. The present study is one more step in this direction. This paper describes a data fusion technique by combining the information for robust damage detection using the electromechanical impedance (EMI) method. The EMI method is commonly used for damage detection due to its sensitivity to low levels of damage. In this paper, the information of resistance (R) and conductance (G) is studied in a selected frequency band and a novel data fusion approach is proposed. A novel fused parameter (F) is developed by combining the information from G and R. The difference in the new metric under different damage conditions is then quantified using established indices such as the root mean square deviation (RMSD) index, mean absolute percentage deviation (MAPD), and root mean square deviation using k-th state as the reference (RMSDk). The paper presents an application of the new metric for detection of damage in three structures, namely, a thin aluminum (Al) plate with increasing damage severity (simulated with a drilled hole of increasing size), a glass fiber reinforced polymer (GFRP) composite beam with increasing delamination and another GFRP plate with impact-induced damage scenarios. Based on the experimental results, it is apparent that the variable F increases the robustness of the damage detection as compared to the quantities R and G.

2.
Sensors (Basel) ; 19(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003480

RESUMO

Guided waves (GW) allow fast inspection of a large area and hence have attracted research interest from the structural health monitoring (SHM) community. Thus, GW-based SHM is ideal for thin structures such as plates, pipes, etc., and is finding applications in several fields like aerospace, automotive, wind energy, etc. The GW propagate along the surface of the sample and get reflected from discontinuities in the structure in the form of boundaries and damage. Through proper signal processing of the reflected waves based on their time of arrival, the damage can be detected and isolated. For complex structures, a higher number of sensors may be required, which increases the cost of the equipment, as well as the mass. Thus, there is an effort to reduce the number of sensors without compromising the quality of the monitoring achieved. It is of utmost importance that the entire structure can be investigated. Hence, it is necessary to optimize the locations of the sensors in order to maximize the coverage while limiting the number of sensors used. A genetic algorithm (GA)-based optimization strategy was proposed by the authors for use in a simple aluminum plate. This paper extends the optimization methodology for other shape plates and presents experimental, analytical, and numerical studies. The sensitivity studies have been carried out by changing the relative weights of the application demands and presented in the form of a Pareto front. The Pareto front allows comparison of the relative importance of the different application demands, and an appropriate choice can be made based on the information provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...