Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38862192

RESUMO

To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Infecções por Chlamydia , Chlamydia muridarum , Citocinas , Camundongos Endogâmicos BALB C , Animais , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Chlamydia muridarum/imunologia , Citocinas/metabolismo , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/imunologia , Camundongos , Anticorpos Antibacterianos/sangue , Injeções Intramusculares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Imunização Secundária , Modelos Animais de Doenças , Imunogenicidade da Vacina , Injeções Subcutâneas , Nanopartículas/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Eficácia de Vacinas , Células Th1/imunologia , Nanovacinas
2.
Int J Nanomedicine ; 19: 1287-1301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348174

RESUMO

Introduction: Interleukin-10 (IL-10) is a key anti-inflammatory mediator in protecting host from over-exuberant responses to pathogens and play important roles in wound healing, autoimmunity, cancer, and homeostasis. However, its application as a therapeutic agent for biomedical applications has been limited due to its short biological half-life. Therefore, it is important to prolong the half-life of IL-10 to replace the current therapeutic application, which relies on administering large and repeated dosages. Therefore, not a cost-effective approach. Thus, studies that aim to address this type of challenges are always in need. Methods: Recombinant IL-10 was encapsulated in biodegradable nanoparticles (Poly-(Lactic-co-Glycolic Acid) and Chitosan)) by the double emulsion method and then characterized for size, surface charge, thermal stability, cytotoxicity, in vitro release, UV-visible spectroscopy, and Fourier Transform-Infrared Spectroscopy as well as evaluated for its anti-inflammatory effects. Bioactivity of encapsulated IL-10 was evaluated in vitro using J774A.1 macrophage cell-line and in vivo using BALB/c mice. Inflammatory cytokines (IL-6 and TNF-α) were quantified from culture supernatants using specific enzyme-linked immunosorbent assay (ELISA), and significance was analyzed using ANOVA. Results: We obtained a high 96% encapsulation efficiency with smooth encapsulated IL-10 nanoparticles of ~100-150 nm size and release from nanoparticles as measurable to 22 days. Our result demonstrated that encapsulated IL-10 was biocompatible and functional by reducing the inflammatory responses induced by LPS in macrophages. Of significance, we also proved the functionality of encapsulated IL-10 by its capacity to reduce inflammation in BALB/c mice as provoked by Chlamydia trachomatis, an inflammatory sexually transmitted infectious bacterium. Discussion: Collectively, our results show the successful IL-10 encapsulation, slow release to prolong its biological half-life and reduce inflammatory cytokines IL-6 and TNF production in vitro and in mice. Our results serve as proof of concept to further explore the therapeutic prospective of encapsulated IL-10 for biomedical applications, including inflammatory diseases.


Assuntos
Quitosana , Nanopartículas , Camundongos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Interleucina-10 , Ácido Láctico/química , Quitosana/química , Ácido Poliglicólico/química , Interleucina-6 , Citocinas , Nanopartículas/química , Inflamação/tratamento farmacológico , Chlamydia trachomatis , Anti-Inflamatórios/farmacologia
3.
Front Immunol ; 12: 660932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936096

RESUMO

Recently we reported the immune-potentiating capacity of a Chlamydia nanovaccine (PLGA-rMOMP) comprising rMOMP (recombinant major outer membrane protein) encapsulated in extended-releasing PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. Here we hypothesized that PLGA-rMOMP would bolster immune-effector mechanisms to confer protective efficacy in mice against a Chlamydia muridarum genital challenge and re-challenge. Female BALB/c mice received three immunizations, either subcutaneously (SC) or intranasally (IN), before receiving an intravaginal challenge with C. muridarum on day 49 and a re-challenge on day 170. Both the SC and IN immunization routes protected mice against genital challenge with enhanced protection after a re-challenge, especially in the SC mice. The nanovaccine induced robust antigen-specific Th1 (IFN-γ, IL-2) and IL-17 cytokines plus CD4+ proliferating T-cells and memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) phenotypes in immunized mice. Parallel induction of antigen-specific systemic and mucosal Th1 (IgG2a, IgG2b), Th2 (IgG1), and IgA antibodies were also noted. Importantly, immunized mice produced highly functional Th1 avidity and serum antibodies that neutralized C. muridarum infectivity of McCoy fibroblasts in-vitro that correlated with their respective protection levels. The SC, rather than the IN immunization route, triggered higher cellular and humoral immune effectors that improved mice protection against genital C. muridarum. We report for the first time that the extended-releasing PLGA 85:15 encapsulated rMOMP nanovaccine confers protective immunity in mice against genital Chlamydia and advances the potential towards acquiring a nano-based Chlamydia vaccine.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Genitália/efeitos dos fármacos , Nanopartículas/química , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/química , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/administração & dosagem , Citocinas/imunologia , Feminino , Genitália/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação
4.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924320

RESUMO

Capsules are one of the major solid dosage forms available in a variety of compositions and shapes. Developments in this dosage form are not new, but the production of non-gelatin capsules is a recent trend. In pharmaceutical as well as other biomedical research, alginate has great versatility. On the other hand, the use of inorganic material to enhance material strength is a common research topic in tissue engineering. The research presented here is a combination of qualities of alginate and montmorillonite (MMT). These two materials were used in this research to produce a soft non-gelatin modified-release capsule. Moreover, the research describes a facile benchtop production of these capsules. The produced capsules were critically analyzed for their appearance confirming resemblance with marketed capsules, functionality in terms of drug encapsulation, as well as release and durability.

5.
Mediators Inflamm ; 2020: 7461742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684836

RESUMO

The immunopathology of chlamydial diseases is exacerbated by a broad-spectrum of inflammatory mediators, which we reported are inhibited by IL-10 in macrophages. However, the chlamydial protein moiety that induces the inflammatory mediators and the mechanisms by which IL-10 inhibits them are unknown. We hypothesized that Chlamydia major outer membrane protein (MOMP) mediates its disease pathogenesis, and the suppressor of cytokine signaling (SOCS)1 and SOCS3 proteins are mediators of the IL-10 inhibitory actions. Our hypothesis was tested by exposing mouse J774 macrophages to chlamydial stimulants (live Chlamydia muridarum and MOMP) with and without IL-10. MOMP significantly induced several inflammatory mediators (IL-6, IL-12p40, CCL5, CXCL10), which were dose-dependently inhibited by IL-10. Chlamydial stimulants induced the mRNA gene transcripts and protein expression of SOCS1 and SOCS3, with more SOCS3 expression. Notably, IL-10 reciprocally regulated their expression by reducing SOCS1 and increasing SOCS3. Specific inhibitions of MAPK pathways revealed that p38, JNK, and MEK1/2 are required for inducing inflammatory mediators as well as SOCS1 and SOCS3. Chlamydial stimulants triggered an M1 pro-inflammatory phenotype evidently by an enhanced nos2 (M1 marker) expression, which was skewed by IL-10 towards a more M2 anti-inflammatory phenotype by the increased expression of mrc1 and arg1 (M2 markers) and the reduced SOCS1/SOCS3 ratios. Neutralization of endogenously produced IL-10 augmented the secretion of inflammatory mediators, reduced SOCS3 expression, and skewed the chlamydial M1 to an M2 phenotype. Inhibition of proteasome degradation increased TNF but decreased IL-10, CCL5, and CXCL10 secretion by suppressing SOCS1 and SOCS3 expressions and dysregulating their STAT1 and STAT3 transcription factors. Our data show that SOCS1 and SOCS3 are regulators of IL-10 inhibitory actions, and underscore SOCS proteins as therapeutic targets for IL-10 control of inflammation for Chlamydia and other bacterial inflammatory diseases.


Assuntos
Proteínas da Membrana Bacteriana Externa/toxicidade , Chlamydia muridarum/patogenicidade , Inflamação/metabolismo , Interleucina-10/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Linhagem Celular , Citometria de Fluxo , Camundongos , Microscopia de Fluorescência , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética
6.
Nanomedicine ; 29: 102257, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32610072

RESUMO

Vaccine developmental strategies are utilizing antigens encapsulated in biodegradable polymeric nanoparticles. Here, we developed a Chlamydia nanovaccine (PLGA-rMOMP) by encapsulating its recombinant major outer membrane protein (rMOMP) in the extended-releasing and self-adjuvanting PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. PLGA-rMOMP was small (nanometer size), round and smooth, thermally stable, and exhibited a sustained release of rMOMP. Stimulation of mouse primary dendritic cells (DCs) with PLGA-rMOMP augmented endosome processing, induced Th1 cytokines (IL-6 and IL-12p40), and expression of MHC-II and co-stimulatory (CD40, CD80, and CD86) molecules. BALB/c mice immunized with PLGA-rMOMP produced enhanced CD4+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) phenotypes and functional antigen-specific serum IgG antibodies. In vivo biodistribution of PLGA-rMOMP revealed its localization within lymph nodes, suggesting migration from the injection site via DCs. Our data provide evidence that the PLGA (85:15) nanovaccine activates DCs and augments Chlamydia-specific rMOMP adaptive immune responses that are worthy of efficacy testing.


Assuntos
Imunidade Adaptativa/genética , Proteínas da Membrana Bacteriana Externa/genética , Nanopartículas/química , Vacinas/imunologia , Imunidade Adaptativa/imunologia , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Antígenos CD4/química , Antígenos CD4/imunologia , Chlamydia/genética , Chlamydia/imunologia , Chlamydia/patogenicidade , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/imunologia , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Selectina L/química , Selectina L/imunologia , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/imunologia , Linfócitos T/imunologia , Vacinas/genética
7.
Sci Rep ; 9(1): 12040, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427692

RESUMO

Plant extracts and their different growth phases have been manipulated for the fabrication of nanomaterials, which can be an eco-friendly alternative to the chemical methods that produce hazardous by-products. However, practical difficulties in isolation of the nanoparticles obtained through biological methods and the scanty control that these methods allow over their shapes and sizes impose limitations in their utility. For the first time, we report here a versatile system using cell suspension culture of Medicago sativa, which ensures control over the reaction to regulate size of the particles as well as their easier recovery afterwards. Isolated nanoparticles were characterized for their shape, size and functions. The particles varied in shapes from isodiametric spheres to exotic tetrahedrons, pentagons and pentagonal prisms. They clearly demonstrated catalytic activity in the reduction reaction of methylene blue by stannous chloride. Interestingly, the cell culture-derived particles were found less cytotoxic to healthy human cell line HEp-2 while more cytotoxic to the cancer cell line 4T-1 in comparison to those synthesized through citrate method. However, when administered in mice, these nanoparticles elicited similar inflammatory responses as those produced by chemically synthesized counterparts. These results envisage the utility of these particles for various biological applications.


Assuntos
Ouro , Nanopartículas Metálicas , Células Vegetais , Catálise , Técnicas de Cultura de Células , Células Cultivadas , Ouro/efeitos adversos , Ouro/química , Química Verde , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Metais Pesados/efeitos adversos , Metais Pesados/química , Extratos Vegetais
8.
Expert Opin Drug Deliv ; 16(9): 969-980, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31382795

RESUMO

Introduction: Human respiratory syncytial virus (RSV) is a common respiratory virus that causes severe lower respiratory tract infection in infants, children and aged adults. Currently, there is no active prophylaxis present in the market for RSV infection; however, there are over a dozen compounds being tested in the laboratory as well as clinical trials. To increase the efficiency and safety of these therapeutics, there is a need for delivery vehicles. Areas covered: Liposomes can be used for delivering anti-RSV agents with the advantage of modulating and eliciting the desired adjuvant effect by the different combination of lipids. This review discusses the promising application of liposome for anti-RSV therapeutics. Expert opinion: Liposomes are attracting attention for delivery of pulmonary therapeutics, since they offer compatibility for delivering drugs, vaccines and other therapeutic molecules. Variation in liposome size and composition gives flexibility for the amount and number of deliverables, whilst targeted delivery with the capability for immunomodulation makes liposomes a promising candidate for RSV therapeutic applications.


Assuntos
Antivirais/administração & dosagem , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Animais , Humanos , Lipossomos
9.
Viruses ; 11(8)2019 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405261

RESUMO

Treatment drugs, besides their specific activity, often have multiple effects on the body. The undesired effect of the drug may be repurposed as therapeutics, saving significant investigative time and effort. Minocycline has anti-cancer, anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Presently, minocycline is also known to show anti-viral activity against Influenza virus, Japanese encephalitis virus, Simian immunodeficiency virus, Human immunodeficiency virus and West Nile virus. Here, we investigate the effect of minocycline on Respiratory syncytial virus (RSV), a common respiratory virus that causes severe mortality and morbidity in infants, children, and older adult populations. Currently, there is no effective vaccine or treatment for RSV infection; hence, there is a critical need for alternative and effective drug choices. Our study shows that minocycline reduces the RSV-mediated cytopathic effect and prevents RSV infection. This is the first study demonstrating the anti-viral activity of minocycline against RSV.


Assuntos
Antibacterianos/uso terapêutico , Antibioticoprofilaxia , Minociclina/uso terapêutico , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Antibacterianos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Minociclina/farmacologia , Infecções por Vírus Respiratório Sincicial/virologia
10.
Nanomaterials (Basel) ; 9(8)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357440

RESUMO

Inflammation, as induced by the presence of cytokines and chemokines, is an integral part of chlamydial infections. The anti-inflammatory cytokine, interleukin (IL)-10, has been reported to efficiently suppress the secretion of inflammatory cytokines triggered by Chlamydia in mouse macrophages. Though IL-10 is employed in clinical applications, its therapeutic usage is limited due to its short half-life. Here, we document the successful encapsulation of IL-10 within the biodegradable polymeric nanoparticles of PLA-PEG (Poly (lactic acid)-Poly (ethylene glycol), to prolong its half-life. Our results show the encapsulated-IL-10 size (~238 nm), zeta potential (-14.2 mV), polydispersity index (0.256), encapsulation efficiency (~77%), and a prolonged slow release pattern up to 60 days. Temperature stability of encapsulated-IL-10 was favorable, demonstrating a heat capacity of up to 89 °C as shown by differential scanning calorimetry analysis. Encapsulated-IL-10 modulated the release of IL-6 and IL-12p40 in stimulated macrophages in a time- and concentration-dependent fashion, and differentially induced SOCS1 and SOCS3 as induced by chlamydial stimulants in macrophages. Our finding offers the tremendous potential for encapsulated-IL-10 not only for chlamydial inflammatory diseases but also biomedical therapeutic applications.

11.
J Biomater Appl ; 33(7): 924-934, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472917

RESUMO

OBJECTIVE: To investigate the toxicity and antibacterial application of antimicrobial peptide-functionalized silver-coated carbon nanotubes against Staphylococcus infection using a full thickness human three-dimensional skin model. MATERIALS AND METHODS: The three-dimensional skin formation on the scaffolds was characterized by electron microscopy and investigation of several skin cell markers by real time-reverse transcriptase polymerase chain reaction. Functionalized silver-coated carbon nanotubes were prepared using carboxylated silver-coated carbon nanotubes with antimicrobial peptides such as TP359, TP226 and TP557. Following the characterization and toxicity evaluation, the antibacterial activity of functionalized silver-coated carbon nanotubes against Staphylococcus aureus was investigated using a bacterial enumeration assay and scanning electron microscopy. For this purpose, a scar on the human three-dimensional skin grown on Alvetex scaffold using keratinocytes and fibroblasts cells was created by taking precaution not to break the scaffold beneath, followed by incubation with 5 µg/mL of functionalized silver-coated carbon nanotubes re-suspended in minimum essential medium for 2 h. Post 2-h incubation, 200 µL of minimum essential medium containing 1 × 104 colony forming units of Staphylococcus aureus were incubated for 2 h. After incubation with bacteria, the colony forming unit/gram (cfu/g) of skin tissue were counted using the plate count assay and the samples were processed for scanning electron microscopy analysis. RESULTS: MTT assay revealed no toxicity of functionalized silver-coated carbon nanotubes to the skin cells such as keratinocytes and fibroblasts at 5 µg/mL with 98% cell viability. The bacterial count increased from 104 to 108 cfu/g in the non-treated skin model, whereas skin treated with functionalized silver-coated carbon nanotubes showed only a small increase from 104 to 105 cfu/g (1000-fold viable cfu difference). Scanning electron microscopy analysis showed the presence of Staphylococcus aureus on the non-treated skin as opposed to the treated skin. CONCLUSION: Thus, our results showed that functionalized silver-coated carbon nanotubes are not only non-toxic, but also help reduce the infection due to their antibacterial activity. These findings will aid in the development of novel antibacterial skin substitutes.


Assuntos
Antibacterianos/farmacologia , Peptídeos/farmacologia , Prata/farmacologia , Pele/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Humanos , Nanotubos de Carbono/química , Peptídeos/química , Prata/química , Pele/efeitos dos fármacos , Pele/ultraestrutura
12.
Front Immunol ; 9: 2369, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374357

RESUMO

Recently, we reported that our PPM chlamydial nanovaccine [a biodegradable co-polymeric PLA-PEG (poly(lactic acid)-poly(ethylene glycol))-encapsulated M278 peptide (derived from the major outer membrane protein (MOMP) of Chlamydia)] exploits the caveolin-mediated endocytosis pathway for endosomal processing and MHC class II presentation to immune-potentiate Chlamydia-specific CD4+ T-cell immune effector responses. In the present study, we employed the Chlamydia muridarum mouse infection model to evaluate the protective efficacy of PPM against a genital tract challenge. Our results show that mice immunized with PPM were significantly protected against a homologous genital tract challenge evidently by reduced vaginal bacterial loads. Protection of mice correlated with enhanced Chlamydia-specific adaptive immune responses predominated by IFN-γ along with CD4+ T-cells proliferation and their differentiation to CD4+ memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) T-cell phenotypes. We observed the elevation of M278- and MOMP-specific serum antibodies with high avidity in the ascending order IgG1 > IgG2b > IgG2a. A key finding was the elevated mucosal IgG1 and IgA antibody titers followed by an increase in MOMP-specific IgA after the challenge. The Th1/Th2 antibody titer ratios (IgG2a/IgG1 and IgG2b/IgG1) revealed that PPM evoked a Th2-directed response, which skewed to a Th1-dominated antibody response after the bacterial challenge of mice. In addition, PPM immune sera neutralized the infectivity of C. muridarum in McCoy cells, suggesting the triggering of functional neutralizing antibodies. Herein, we reveal for the first time that subcutaneous immunization with the self-adjuvanting biodegradable co-polymeric PPM nanovaccine immune-potentiated robust CD4+ T cell-mediated immune effector responses; a mixed Th1 and Th2 antibody response and local mucosal IgA to protect mice against a chlamydial genital tract challenge.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia muridarum/imunologia , Imunidade nas Mucosas , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos/imunologia , Vacinas Bacterianas/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imunização , Imunoglobulina G/imunologia , Memória Imunológica , Lactatos , Camundongos , Testes de Neutralização , Polietilenoglicóis , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vagina/imunologia , Vagina/microbiologia
13.
J Nanobiotechnology ; 16(1): 31, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587743

RESUMO

BACKGROUND: Synthesis of silver nano-compounds with enhanced antimicrobial effects is of great interest for the development of new antibacterial agents. Previous studies have reported the antibacterial properties of pegylated silver-coated carbon nanotubes (pSWCNT-Ag) showing less toxicity in human cell lines. However, the mechanism underlining the pSWCNT-Ag as a bactericidal agent remained unfolded. Here we assessed the pSWCNT-Ag effects against foodborne pathogenic bacteria growth and proteome profile changes. RESULTS: Measurements of bioluminescent imaging, optical density, and bacteria colony forming units revealed dose-dependent and stronger bactericidal activity of pSWCNT-Ag than their non-pegylated counterparts (SWCNT-Ag). In ovo administration of pSWCNT-Ag or phosphate-buffered saline resulted in comparable chicken embryo development and growth. The proteomic analysis, using two-dimensional electrophoresis combined with matrix assisted laser desorption/ionization time of flight/time of flight mass spectrometry, was performed on control and surviving Salmonella enterica serovar Typhimurium to pSWCNT-Ag. A total of 15 proteins (ten up-regulated and five down-regulated) differentially expressed proteins were identified. Functional analyses showed significant reduction of proteins associated with biofilm formation, nutrient and energy metabolism, quorum sensing and maintenance of cell structure and cell motility in surviving S. Typhimurium. In contrast, proteins associated with oxygen stress, DNA protection, starvation, membrane rebuilding, and alternative nutrient formation were induced as the compensatory reaction. CONCLUSIONS: This study provides further evidence of the antibacterial effects of pSWCNT-Ag nanocomposites and knowledge of their mechanism of action through various protein changes. The findings may lead to the development of more effective and safe antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nanotubos de Carbono/química , Salmonella typhimurium/efeitos dos fármacos , Prata/farmacologia , Animais , Antibacterianos/química , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Embrião de Galinha , Composição de Medicamentos , Desenvolvimento Embrionário/efeitos dos fármacos , Microbiologia de Alimentos , Ontologia Genética , Humanos , Medições Luminescentes , Anotação de Sequência Molecular , Nanocompostos/química , Polietilenoglicóis/química , Proteoma/agonistas , Proteoma/antagonistas & inibidores , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Prata/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Expert Rev Vaccines ; 17(3): 217-227, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29382248

RESUMO

INTRODUCTION: There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. AREAS COVERED: This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. EXPERT COMMENTARY: The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Infecções por Chlamydia/prevenção & controle , Animais , Vacinas Bacterianas/imunologia , Infecções por Chlamydia/imunologia , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas , Polímeros/química
15.
Biomaterials ; 159: 130-145, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29324305

RESUMO

We previously developed a Chlamydia trachomatis nanovaccine (PPM) by encapsulating a chlamydial M278 peptide within poly(lactic acid)-poly(ethylene glycol) biodegradable nanoparticles that immunopotentiated Chlamydia-specific immune effector responses in mice. Herein, we investigated the mechanistic interactions of PPM with mouse bone marrow-derived dendritic cells (DCs) for its uptake, trafficking, and T cell activation. Our results reveal that PPM triggered enhanced expression of effector cytokines and chemokines, surface activation markers (Cd1d2, Fcgr1), pathogen-sensing receptors (TLR2, Nod1), co-stimulatory (CD40, CD80, CD86) and MHC class I and II molecules. Co-culturing of PPM-primed DCs with T cells from C. muridarum vaccinated mice yielded an increase in Chlamydia-specific immune effector responses including CD3+ lymphoproliferation, CD3+CD4+ IFN-γ-secreting cells along with CD3+CD4+ memory (CD44high and CD62Lhigh) and effector (CD44high and CD62Llow) phenotypes. Intracellular trafficking analyses revealed an intense expression and colocalization of PPM predominantly in endosomes. PPM also upregulated the transcriptional and protein expression of the endocytic mediator, caveolin-1 in DCs. More importantly, the specific inhibition of caveolin-1 led to decreased expression of PPM-induced cytokines and co-stimulatory molecules. Our investigation shows that PPM provided enhancement of uptake, probably by exploiting the caveolin-mediated endocytosis pathway, endosomal processing, and MHC II presentation to immunopotentiate Chlamydia-specific immune effector responses mediated by CD4+ T cells.


Assuntos
Endocitose/fisiologia , Lactatos/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Linfócitos T CD4-Positivos , Caveolinas/metabolismo , Proliferação de Células/fisiologia , Chlamydia muridarum/imunologia , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos BALB C
16.
PLoS One ; 12(12): e0189662, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244827

RESUMO

The molecular mechanisms involved in breast cancer progression and metastasis still remain unclear to date. It is a heterogeneous disease featuring several different phenotypes with consistently different biological characteristics. Neuroligins are neural cell adhesion molecules that have been implicated in heterotopic cell adhesion. In humans, alterations in neuroligin genes are implicated in autism and other cognitive diseases. Until recently, neuroligins have been shown to be abundantly expressed in blood vessels and also play a role implicated in the growth of glioma cells. Here we report increased expression of neuroligin 4X (NLGN4X) in breast cancer. We found NLGN4X was abundantly expressed in breast cancer tissues. NLGN4X expression data for all breast cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE) was analyzed. Correlation between NLGN4X levels and clinicopathologic parameters were analyzed within Oncomine datasets. Evaluation of these bioinfomatic datasets results revealed that NLGN4X expression was higher in triple negative breast cancer cells, particularly the basal subtype and tissues versus non-triple-negative sets. Its level was also observed to be higher in metastatic tissues. RT-PCR, flow cytometry and immunofluorescence study of MDA-MB-231 and MCF-7 breast cancer cells validated that NLGN4X was increased in MDA-MB-231. Knockdown of NLGN4X expression by siRNA decreased cell proliferation and migration significantly in MDA-MB-231 breast cancer cells. NLGN4X knockdown in MDA-MB-231 cells resulted in induction of apoptosis as determined by annexin staining, elevated caspase 3/7 and cleaved PARP by flow cytometry. High NLGN4X expression highly correlated with decrease in relapse free-survival in TNBC. NLGN4X might represent novel biomarkers and therapeutic targets for breast cancer. Inhibition of NLGN4X may be a new target for the prevention and treatment of breast cancer.


Assuntos
Biomarcadores Tumorais/genética , Moléculas de Adesão Celular Neuronais/genética , Recidiva Local de Neoplasia/genética , Neoplasias de Mama Triplo Negativas/genética , Apoptose/genética , Proliferação de Células/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Neoplasias de Mama Triplo Negativas/patologia
17.
J Biol Eng ; 11: 49, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255480

RESUMO

The repair or replacement of damaged skins is still an important, challenging public health problem. Immune acceptance and long-term survival of skin grafts represent the major problem to overcome in grafting given that in most situations autografts cannot be used. The emergence of artificial skin substitutes provides alternative treatment with the capacity to reduce the dependency on the increasing demand of cadaver skin grafts. Over the years, considerable research efforts have focused on strategies for skin repair or permanent skin graft transplantations. Available skin substitutes include pre- or post-transplantation treatments of donor cells, stem cell-based therapies, and skin equivalents composed of bio-engineered acellular or cellular skin substitutes. However, skin substitutes are still prone to immunological rejection, and as such, there is currently no skin substitute available to overcome this phenomenon. This review focuses on the mechanisms of skin rejection and tolerance induction and outlines in detail current available strategies and alternatives that may allow achieving full-thickness skin replacement and repair.

18.
Nanomaterials (Basel) ; 7(7)2017 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-28671603

RESUMO

Interleukin-10 (IL-10) is a key anti-inflammatory and immunosuppressive cytokine and therefore represents a potential therapeutic agent especially in inflammatory diseases. However, despite its proven therapeutic efficacy, its short half-life and proteolytic degradation in vivo combined with its low storage stability have limited its therapeutic use. Strategies have been developed to overcome most of these shortcomings, including in particular bioconjugation with stabilizing agents such as polyethylene glycol (PEG) and poly (vinylpyrolidone) (PVP), but so far these have had limited success. In this paper, we present an alternative method consisting of bioconjugating IL-10 to PVP-coated silver nanoparticles (Ag-PVPs) in order to achieve its storage stability by preventing denaturation and to improve its anti-inflammatory efficacy. Silver nanoparticles capped with a carboxylated PVP were produced and further covalently conjugated with IL-10 protein by carbodiimide crosslinker chemistry. The IL-10 conjugated Ag-PVPs exhibited increased stability and anti-inflammatory effectiveness in vitro. This study therefore provides a novel approach to bioconjugating PVP-coated silver nanoparticles with therapeutic proteins, which could be useful in drug delivery and anti-inflammatory therapies.

19.
PLoS One ; 12(5): e0176640, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467446

RESUMO

Pseudomonas aeruginosa infection induces vigorous inflammatory mediators secreted by epithelial cells, which do not necessarily eradicate the pathogen. Nonetheless, it reduces lung function due to significant airway damage, most importantly in cystic fibrosis patients. Recently, we published that TP359, a proprietary cationic peptide had potent bactericidal effects against P. aeruginosa, which were mediated by down-regulating its outer membrane biogenesis genes. Herein, we hypothesized that TP359 bactericidal effects could also serve to regulate P. aeruginosa-induced lung inflammation. We explored this hypothesis by infecting human A549 lung cells with live P. aeruginosa non-isogenic, mucoid and non-mucoid strains and assessed the capacity of TP359 to regulate the levels of elicited TNFα, IL-6 and IL-8 inflammatory cytokines. In all instances, the mucoid strain elicited higher concentrations of cytokines in comparison to the non-mucoid strain, and TP359 dose-dependently down-regulated their respective levels, suggesting its regulation of lung inflammation. Surprisingly, P. aeruginosa flagellin, and not its lipopolysaccharide moiety, was the primary inducer of inflammatory cytokines in lung cells, which were similarly down-regulated by TP359. Blocking of TLR5, the putative flagellin receptor, completely abrogated the capacity of infected lung cells to secrete cytokines, underscoring that TP359 regulates inflammation via the TLR5-dependent signaling pathway. Downstream pathway-specific inhibition studies further revealed that the MAPK pathway, essentially p38 and JNK are necessary for induction of P. aeruginosa elicited inflammatory cytokines and their down-regulation by TP359. Collectively, our data provides evidence to support exploring the relevancy of TP359 as an anti-microbial and anti-inflammatory agent against P. aeruginosa for clinical applications.


Assuntos
Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pneumonia Bacteriana/tratamento farmacológico , Receptor 5 Toll-Like/fisiologia , Células A549 , Western Blotting , Relação Dose-Resposta a Droga , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas , Pseudomonas aeruginosa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
20.
Int J Mol Sci ; 18(4)2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387714

RESUMO

Tissue engineered skin substitutes for wound healing have evolved tremendously over the last couple of years. New advances have been made toward developing skin substitutes made up of artificial and natural materials. Engineered skin substitutes are developed from acellular materials or can be synthesized from autologous, allograft, xenogenic, or synthetic sources. Each of these engineered skin substitutes has their advantages and disadvantages. However, to this date, a complete functional skin substitute is not available, and research is continuing to develop a competent full thickness skin substitute product that can vascularize rapidly. There is also a need to redesign the currently available substitutes to make them user friendly, commercially affordable, and viable with longer shelf life. The present review focuses on providing an overview of advances in the field of tissue engineered skin substitute development, the availability of various types, and their application.


Assuntos
Fenômenos Fisiológicos da Pele , Engenharia Tecidual/métodos , Cicatrização , Materiais Biocompatíveis , Humanos , Regeneração , Transplante de Pele , Pele Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA