Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38826415

RESUMO

Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Discordant outcomes among dizygotic twins could be explained by genetic susceptibly or protection. Among several well-recognized threats to the developing brain, Zika is a mosquito-borne, positive-stranded RNA virus that was originally isolated in Uganda and spread to cause epidemics in Africa, Asia, and the Americas. In the Americas, the virus caused congenital Zika syndrome and a multitude of neurodevelopmental disorders. As of now, there is no preventative treatment or cure for the adverse outcomes caused by prenatal Zika infection. The Prenatal Infection and Neurodevelopmental Genetics (PING) Consortium was initiated in 2016 to identify factors modulating prenatal brain injury and postnatal neurodevelopmental outcomes for Zika and other prenatal viral infections. Methods: The Consortium has pooled information from eight multi-site studies conducted at 23 research centers in six countries to build a growing clinical and genomic data repository. This repository is being mined to search for modifiers of virally induced brain injury and developmental outcomes. Multilateral partnerships include commitments with Children's National Hospital (USA), Instituto Nacional de Salud (Colombia), the Natural History of Zika Virus Infection in Gestation program (Brazil), and Zika Instituto Fernandes Figueira (Brazil), in addition to the Centers for Disease Control and Prevention and the National Institutes of Health. Discussion: Our goal in bringing together these sets of patient data was to test the hypothesis that personal and populational genetic differences affect the severity of brain injury after a prenatal viral infection and modify neurodevelopmental outcomes. We have enrolled 4,102 mothers and 3,877 infants with 3,063 biological samples and clinical data covering over 80 phenotypic fields and 5,000 variables. There were several notable challenges in bringing together cohorts enrolled in different studies, including variability in the timepoints evaluated and the collected clinical data and biospecimens. Thus far, we have performed whole exome sequencing on 1,226 participants. Here, we present the Consortium's formation and the overarching study design. We began our investigation with prenatal Zika infection with the goal of applying this knowledge to other prenatal infections and exposures that can affect brain development.

2.
Biomed Pharmacother ; 173: 116289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452653

RESUMO

Mycobacterium tuberculosis (Mtb), causative agent of tuberculosis (TB) and non-tubercular mycobacterial (NTM) pathogens such as Mycobacterium abscessus are one of the most critical concerns worldwide due to increased drug-resistance resulting in increased morbidity and mortality. Therefore, focusing on developing novel therapeutics to minimize the treatment period and reducing the burden of drug-resistant Mtb and NTM infections are an urgent and pressing need. In our previous study, we identified anti-mycobacterial activity of orally bioavailable, non-cytotoxic, polycationic phosphorus dendrimer 2G0 against Mtb. In this study, we report ability of 2G0 to potentiate activity of multiple classes of antibiotics against drug-resistant mycobacterial strains. The observed synergy was confirmed using time-kill kinetics and revealed significantly potent activity of the combinations as compared to individual drugs alone. More importantly, no re-growth was observed in any tested combination. The identified combinations were further confirmed in intra-cellular killing assay as well as murine model of NTM infection, where 2G0 potentiated the activity of all tested antibiotics significantly better than individual drugs. Taken together, this nanoparticle with intrinsic antimycobacterial properties has the potential to represents an alternate drug candidate and/or a novel delivery agent for antibiotics of choice for enhancing the treatment of drug-resistant mycobacterial pathogens.


Assuntos
Dendrímeros , Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Antibacterianos/farmacologia , Dendrímeros/farmacologia , Preparações Farmacêuticas , Tuberculose/microbiologia
3.
Int J Biol Macromol ; 263(Pt 2): 130455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417748

RESUMO

Rv1176c of Mycobacterium tuberculosis H37Rv belongs to the PadR-s1 subfamily of the PadR family of protein. Rv1176c forms a stable dimer in solution. Its stability is characterized by a thermal melting transition temperature (Tm) of 39.4 °C. The crystal structure of Rv1176c was determined at a resolution of 2.94 Å, with two monomers in the asymmetric unit. Each monomer has a characteristic N-terminal winged-helix-turn-helix DNA-binding domain. Rv1176c C-terminal is a coiled-coil dimerization domain formed of α-helices α5 to α7. In the Rv1176c dimer, there is domain-swapping of the C-terminal domain in comparison to other PadR homologs. In the dimer, there is a long inter-subunit tunnel in which different ligands can bind. Rv1176c was found to bind to the promoter region of its own gene with high specificity. M. smegmatis MC2 155 genome lacks homolog of Rv1176c. Therefore, it was used as a surrogate to characterize the functional role of Rv1176c. Expression of Rv1176c in M. smegmatis MC2 155 cells imparted enhanced tolerance towards oxidative stress. Rv1176c expressing M. smegmatis MC2 155 cells exhibited enhanced intracellular survival in J774A.1 murine macrophage cells. Overall, our studies demonstrate Rv1176c to be a PadR-s1 subfamily transcription factor that can moderate the effect of oxidative stress.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cristalografia por Raios X , Fatores de Transcrição/genética
4.
Antimicrob Agents Chemother ; 66(12): e0056422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445129

RESUMO

Mycobacterial pathogens, including nontuberculous mycobacteria (NTM) and Mycobacterium tuberculosis, are pathogens of significant worldwide interest owing to their inherent drug resistance to a wide variety of FDA-approved drugs as well as causing a broad range of serious infections. Identifying new antibiotics active against mycobacterial pathogens is an urgent unmet need, especially those antibiotics that can bypass existing resistance mechanisms. In this study, we demonstrate that gepotidacin, a first-in-class triazaacenapthylene topoisomerase inhibitor, demonstrates potent activity against M. tuberculosis and M. fortuitum, as well as against other clinically relevant NTM species, including fluoroquinolone-resistant M. abscessus. Furthermore, gepotidacin exhibits concentration-dependent bactericidal activity against various mycobacterial pathogens, synergizes with several drugs utilized for their treatment, and reduces bacterial load in macrophages in intracellular killing assays comparably to amikacin. Additionally, M. fortuitum ATCC 6841 was unable to generate resistance to gepotidacin in vitro. When tested in a murine neutropenic M. fortuitum infection model, gepotidacin caused a significant reduction in bacterial load in various organs at a 10-fold lower concentration than amikacin. Taken together, these findings show that gepotidacin possesses a potentially new mechanism of action that enables it to escape existing resistance mechanisms. Thus, it can be projected as a potent novel lead for the treatment of mycobacterial infections, particularly for NTM, where present therapeutic interventions are extremely limited.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Neutropenia , Animais , Camundongos , Amicacina/farmacologia , Amicacina/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Micobactérias não Tuberculosas , Neutropenia/tratamento farmacológico , Testes de Sensibilidade Microbiana
5.
Sci Rep ; 12(1): 16453, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180490

RESUMO

We evaluated the anti-leishmanial efficacy of different saturated medium-chain fatty acids (FAs, C8-C18) where FA containing C8 chain, caprylic acid (CA), was found to be most potent against Leishmania donovani, the causative agent for visceral leishmaniasis (VL). Different analogs of CA with C8 linear chain, but not higher, along with a carboxyl/ester group showed a similar anti-leishmanial effect. Ergosterol depletion was the major cause of CA-mediated cell death. Molecular docking and molecular dynamic simulation studies indicated the enzyme mevalonate kinase (MevK) of the ergosterol biosynthesis pathway as a possible target of CA. Enzyme assays with purified recombinant MevK and CA/CA analogs confirmed the target with a competitive inhibition pattern. Using biochemical and biophysical studies; strong binding interaction between MevK and CA/CA analogs was established. Further, using parasites with overexpressed MevK and proteomics studies of CA-treated parasites the direct role of MevK as the target was validated. We established the mechanism of the antileishmanial effect of CA, a natural product, against VL where toxicity and drug resistance with current chemotherapeutics demand an alternative. This is the first report on the identification of an enzymatic target with kinetic parameters and mechanistic insights against any organism for a natural medium-chain FA.


Assuntos
Antiprotozoários , Produtos Biológicos , Leishmania donovani , Leishmaniose Visceral , Antiprotozoários/uso terapêutico , Produtos Biológicos/farmacologia , Caprilatos/farmacologia , Ergosterol/metabolismo , Ésteres/farmacologia , Ácidos Graxos/metabolismo , Humanos , Leishmaniose Visceral/parasitologia , Simulação de Acoplamento Molecular , Fosfotransferases (Aceptor do Grupo Álcool)
6.
Front Microbiol ; 13: 1092131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36777032

RESUMO

Introduction: Mycobacterium tuberculosis (Mtb), one of the deadliest human pathogen, has evolved with different strategies of survival inside the host, leading to a chronic state of infection. Phagosomally residing Mtb encounters a variety of stresses, including increasing acidic pH. To better understand the host-pathogen interaction, it is imperative to identify the role of various genes involved in the survivability of Mtb during acidic pH environment. Methods: Bio-informatic and enzymatic analysis were used to identify Mtb gene, Rv3338, as epoxide hydrolase. Subsequently, CRISPRi knockdown strategy was used to decipher its role for Mtb survival during acidic stress, nutrient starvation and inside macrophages. Confocal microscopy was used to analyse its role in subverting phagosomal acidification within macrophage. Results: The present work describes the characterization of Rv3338 which was previously known to be associated with the aprABC locus induced while encountering acidic stress within the macrophage. Bio-informatic analysis demonstrated its similarity to epoxide hydrolase, which was confirmed by enzymatic assays, thus, renamed EphH. Subsequently, we have deciphered its indispensable role for Mtb in protection from acidic stress by using the CRISPRi knockdown strategy. Our data demonstrated the pH dependent role of EphH for the survival of Mtb during nutrient starvation and in conferring resistance against elevated endogenous ROS levels during stress environment. Conclusion: To the best of our knowledge, this is the first report of an EH of Mtb as a crucial protein for bacterial fitness inside the host, a phenomenon central to its pathogenesis.

7.
Biomacromolecules ; 22(6): 2659-2675, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33970615

RESUMO

The long-term treatment of tuberculosis (TB) sometimes leads to nonadherence to treatment, resulting in multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. Inadequate bioavailability of the drug is the main factor for therapeutic failure, which leads to the development of drug-resistant cases. Therefore, there is an urgent need to design and develop novel antimycobacterial agents minimizing the period of treatment and reducing the propagation of resistance at the same time. Here, we report the development of original and noncytotoxic polycationic phosphorus dendrimers essentially of generations 0 and 1, but also of generations 2-4, with pyrrolidinium, piperidinium, and related cyclic amino groups on the surface, as new antitubercular agents active per se, meaning with intrinsic activity. The strategy is based on the phenotypic screening of a newly designed phosphorus dendrimer library (generations 0-4) against three bacterial strains: attenuated Mycobacterium tuberculosis H37Ra, virulent M. tuberculosis H37Rv, and Mangora bovis BCG. The most potent polycationic phosphorus dendrimers 1G0,HCl and 2G0,HCl are active against all three strains with minimum inhibitory concentrations (MICs) between 3.12 and 25.0 µg/mL. Both are irregularly shaped nanoparticles with highly mobile branches presenting a radius of gyration of 7 Å, a diameter of maximal 25 Å, and a solvent-accessible surface area of dominantly positive potential energy with very localized negative patches arising from the central N3P3 core, which steadily interacts with water molecules. The most interesting is 2G0,HCl, showing relevant efficacy against single-drug-resistant (SDR) M. tuberculosis H37Rv, resistant to rifampicin, isoniaid, ethambutol, or streptomycin. Importantly, 2G0,HCl displayed significant in vivo efficacy based on bacterial counts in lungs of infected Balb/C mice at a dose of 50 mg/kg oral administration once a day for 2 weeks and superior efficacy in comparison to ethambutol and rifampicin. This series of polycationic phosphorus dendrimers represents first-in-class drugs to treat TB infection, could fulfill the clinical candidate pipe of this high burden of infectious disease, and play a part in addressing the continuous demand for new drugs.


Assuntos
Dendrímeros , Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Dendrímeros/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...