Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 29(41)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28906570

RESUMO

Dispersions of nanoscale precipitates in metallic alloys have been known to play a key role in strengthening, by increasing their strain hardenability and providing resistance to deformation. Although these phenomena have been extensively investigated in the last century, the traditional approaches employed in the past have not rendered an authoritative microstructural understanding in such materials. The effect of the precipitates' inherent complex morphology and their 3D spatial distribution on evolution and deformation behavior have often been precluded. This study reports, for the first time, implementation of synchrotron-based hard X-ray nanotomography in Al-Cu alloys to measure kinetics of different nanoscale phases in 3D, and reveals insights behind some of the observed novel phase transformation reactions. The experimental results of the present study reconcile with coarsening models from the Lifshitz-Slyozov-Wagner theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. Finally, this study sheds light on the possibilities for establishing new theories for dislocation-particle interactions, based on the limitations of using the Orowan equation in estimating precipitation strengthening.

2.
J Struct Biol ; 195(2): 139-158, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189867

RESUMO

Curculio longinasus Chittenden, 1927 (Coleoptera: Curculionidae), is a weevil species common throughout the southwestern United States that uses its rostrum - a very slender, curved, beak-like projection of the head - to excavate tunnels in plant organs (such as acorns) for egg laying (oviposition). Once the apical portion of the rostrum has been inserted into the preferred substrate for oviposition, the female begins rotating around the perimeter of the hole, elevating her head by extending the fore-legs, and rotating the head in place in a drilling motion. This action causes significant elastic deformation of the rostrum, which will bend until it becomes completely straight. To better understand the mechanical behavior of the cuticle as it undergoes deformation during the preparation of oviposition sites, we develop a comprehensive micro/macro model of the micromechanical structure and properties of the cuticle, spanning across all cuticular regions, and reliably mirroring the resultant macroscale properties of the cuticle. Our modeling approach relies on the use of multi-scale, hierarchical biomaterial representation, and employs various micromechanical schemata - e.g., Mori-Tanaka, effective field, and Maxwell - to calculate the homogenized properties of representative volume elements at each level in the hierarchy. We describe the configuration and behavior of this model in detail, and discuss the theoretical implications and limitations of this approach with emphasis on future biomechanical and comparative evolutionary research. Our detailed account of this approach can thereby serve as a methodological template for exploring the biomechanical behavior of new insect structures.


Assuntos
Comportamento Animal/fisiologia , Quitina/ultraestrutura , Fenômenos Mecânicos , Gorgulhos/fisiologia , Animais , Quitina/química , Feminino , Oviposição/fisiologia , Gorgulhos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...