Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13994, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37634021

RESUMO

In this communication, a planar dual port multiple input multiple output antenna of size 1.2λ0 × 0.6λ0 × 0.008λ0 with LHCP/RHCP features is reported for the fifth-generation new radio n77/n78 sub-6 GHz wireless applications band. The single unit of the proposed design consists of a modified L-shape rectangular radiator with Z-shape slot loaded DGS. The defected ground structure is optimized through machine learning algorithms to achieve the maximum ARBW (output) by Right Shifting (RS) and left shifting (LS) the DGS and obtaining input features. The performance metric for ANN with ADAM optimizer was found to be optimal with MSE and R2 of 0.99 and 0.82, respectively. ANNs can leverage gradient information to guide the optimization process. This enables faster convergence towards optimal solutions compared to popular GAs and PSO, which are often gradient-free optimization methods. The MIMO configuration is achieved by creating a mirror image of the single unit about the x-axis. The salient features of the proposed design are (a) Impedance bandwidth (IBW) of 3.0-4.2 GHz covering the n77/n78 band, (b) 3-dB axial ratio bandwidth (ARBW) of the 2.6-3.9 GHz (c) Port-1 is generating RHCP while Port-2 is generating LHCP, results in polarization diversity. Different diversity performance parameters (ECC < 0.005, DG ~ 9.99 dB, and MEG < 3 dB) are in the optimum range confirming the proposed configuration as a suitable design for a MIMO radiator.

2.
Int J Numer Method Biomed Eng ; 39(4): e3686, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36690467

RESUMO

Hepatocellular carcinoma has been the leading cause of death in recent centuries and with the advent of newer technologies, several thermal and cryo-ablation techniques have been introduced in the recent past. In this regard, microwave ablation has developed into a promising method for thermal ablation technique. However, due to clinical obligations, in-vivo analysis is not feasible and ex-vivo analysis is inaccurate due to changes in the electrical and thermal properties of the tissue. Therefore, in this study, temperature-dependent permittivity, electrical conductivity, and thermal conductivity along with phase change effect due to temperature reaching above 100°C are incorporated using finite element method model. Further, using an intertwined normal mode helical antenna ablation probe, a change in resonant frequency (Δf) and reflection coefficient (ΔS11 ) from the actual value (antenna parameter in the air at 5 GHz) is modeled using second-order polynomial curve fitting to predict the surrounding permittivity in the range of 30-70. A maximum deviation of 0.8 value in permittivity from the actual value is observed. However, to obtain a generalized methodology, XG Boost and CAT Boost algorithms are used. Further, since ablation diameter plays a crucial role in achieving optimal tumor ablation, an artificial neural network (ANN) algorithm with three different optimizers is incorporated to predict ablation diameter using five critical parameters. Such an ANN algorithm which can predict the transversal and axial ablation zone may provide optimal ablation outcomes.


Assuntos
Técnicas de Ablação , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/cirurgia , Modelos Teóricos , Temperatura , Técnicas de Ablação/métodos , Fígado/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...