Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Microsc Res Tech ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747091

RESUMO

The Au partially embedded nanostructure (PEN) is synthesized by ion irradiation on an Au thin film deposited on a glass substrate using a 50 keV Ar ion. Scanning electron microscopy results show ion beam-induced restructuring from irregularly shaped nanostructures (NSs) to spherical Au NSs, and further ion irradiation leads to the formation of well-separated spherical nanoparticles. Higuchi's algorithm of surface analysis is utilized to find the evolution of surface morphology with ion irradiation in terms of the Hurst exponent and fractal dimension. The Au PEN is evidenced by Rutherford backscattering spectrometry and optical studies. Also, the depth of the mechanism behind synthesized PEN is explained on the basis of theoretical simulations, namely, a unified thermal spike and a Monte Carlo simulation consisting of dynamic compositional changes (TRIDYN). Another set of plasmonic NSs was formed on the surface by thermal annealing of the Au film on the substrate. Glucose sensing has been studied on the two types of plasmonic layers: nanoparticles on the surface and PEN. The results reveal the sensing responses of both types of plasmonic layers. However, PEN retains its plasmonic behavior as the NSs are still present after washing with water, which demonstrates the potential for reusability. RESEARCH HIGHLIGHTS: Synthesis of PENs by ion irradiation Utilization of Higuchi's algorithm to explore the surface morphology. Unified thermal spike and TRIDYN simulations being used to explain the results. Glucose is only used as a test case for reusability of substrate.

2.
Chemosphere ; 361: 142487, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821129

RESUMO

This study unveils the detoxification potential of insecticide-tolerant plant beneficial bacteria (PBB), i.e., Ciceribacter azotifigens SF1 and Serratia marcescens SRB1, in spinach treated with fipronil (FIP), profenofos (PF) and chlorantraniliprole (CLP) insecticides. Increasing insecticide doses (25-400 µg kg-1 soil) significantly curtailed germination attributes and growth of spinach cultivated at both bench-scale and in greenhouse experiments. Profenofos at 400 µg kg-1 exhibited maximum inhibitory effects and reduced germination by 55%; root and shoot length by 78% and 81%, respectively; dry matter accumulation in roots and shoots by 79% and 62%, respectively; leaf number by 87% and leaf area by 56%. Insecticide application caused morphological distortion in root tips/surfaces, increased levels of oxidative stress, and cell death in spinach. Application of insecticide-tolerant SF1 and SRB1 strains relieved insecticide pressure resulting in overall improvement in growth and physiology of spinach grown under insecticide stress. Ciceribacter azotifigens improved germination rate (10%); root biomass (53%); shoot biomass (25%); leaf area (10%); Chl-a (45%), Chl-b (36%) and carotenoid (48%) contents of spinach at 25 µg CLP kg-1 soil. PBB inoculation reinvigorated the stressed spinach and modulated the synthesis of phytochemicals, proline, malondialdehyde (MDA), superoxide anions (O2•-), and hydrogen peroxide (H2O2). Scanning electron microscopy (SEM) revealed recovery in root tip morphology and stomatal openings on abaxial leaf surfaces of PBB-inoculated spinach grown with insecticides. Ciceribacter azotifigens inoculation significantly increased intrinsic water use efficiency, transpiration rate, vapor pressure deficit, intracellular CO2 concentration, photosynthetic rate, and stomatal conductance in spinach exposed to 25 µg FIP kg-1. Also, C. azotifigens and S. marcescens modulated the antioxidant defense systems of insecticide-treated spinach. Bacterial strains were strongly colonized to root surfaces of insecticide-stressed spinach seedlings as revealed under SEM. The identification of insecticide-tolerant PBBs such as C. azotifigens and S. marcescens hold the potential for alleviating abiotic stress to spinach, thereby fostering enhanced and safe production within polluted agroecosystems.


Assuntos
Antioxidantes , Inseticidas , Folhas de Planta , Raízes de Plantas , Serratia marcescens , Poluentes do Solo , Spinacia oleracea , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/fisiologia , Spinacia oleracea/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Serratia marcescens/fisiologia , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/metabolismo , Antioxidantes/metabolismo , Inseticidas/toxicidade , Praguicidas/metabolismo , Praguicidas/toxicidade , Biodegradação Ambiental , Estresse Oxidativo/efeitos dos fármacos , Bacillaceae/metabolismo , Bacillaceae/fisiologia , Fotossíntese/efeitos dos fármacos , Microbiologia do Solo , Solo/química , Germinação/efeitos dos fármacos
3.
Pharmaceutics ; 16(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675216

RESUMO

Although antiretroviral therapy (ART) can suppress peripheral HIV, patients still suffer from neuroHIV due to insufficient levels of ART drugs in the brain. Hence, this study focuses on developing a poly lactic-co-glycolic acid (PLGA) nanoparticle-based ART drug delivery system for darunavir (DRV) using an intranasal route that can overcome the limitation of drug metabolic stability and blood-brain barrier (BBB) permeability. The physicochemical properties of PLGA-DRV were characterized. The results indicated that PLGA-DRV formulation inhibits HIV replication in U1 macrophages directly and in the presence of the BBB without inducing cytotoxicity. However, the PLGA-DRV did not inhibit HIV replication more than DRV alone. Notably, the total antioxidant capacity remained unchanged upon treatment with both DRV or PLGA-DRV in U1 cells. Compared to DRV alone, PLGA-DRV further decreased reactive oxygen species, suggesting a decrease in oxidative stress by the formulation. Oxidative stress is generally increased by HIV infection, leading to increased inflammation. Although the PLGA-DRV formulation did not further reduce the inflammatory response, the formulation did not provoke an inflammatory response in HIV-infected U1 macrophages. As expected, in vitro experiments showed higher DRV permeability by PLGA-DRV than DRV alone to U1 macrophages. Importantly, in vivo experiments, especially using intranasal administration of PLGA-DRV in wild-type mice, demonstrated a significant increase in the brain-to-plasma ratio of DRV compared to the free DRV. Overall, findings from this study attest to the potential of the PLGA-DRV nanoformulation in reducing HIV pathogenesis in macrophages and enhancing drug delivery to the brain, offering a promising avenue for treating HIV-related neurological disorders.

4.
Biomolecules ; 14(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38397458

RESUMO

Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.


Assuntos
Alcaloides , Polifenóis , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/metabolismo , Obesidade/metabolismo , Flavonoides , Imunidade
5.
Sci Total Environ ; 914: 169911, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185156

RESUMO

Herbicide application is a common practice in intensive agriculture. However, accumulating herbicide residues in the ecosystem affects important soil attributes. The effect of two herbicides, pendimethalin and pretilachlor, on soil biochemical properties and microbial community composition was studied in a transplanted paddy field. Results reveal a gradual decline in herbicide residue up to 60 days after application. Changes in soil microbiological and biochemical properties (microbial biomass, enzymes, respiration, etc.) showed an inconsistent pattern across the treatments. Quantitative polymerase chain reaction analysis showed the archaeal, bacterial and fungal populations to be of higher order in control soil compared to the treated one. Amplicon sequencing (16S rRNA and ITS genes) exhibited that besides the unclassified genera, ammonia-oxidizing Crenarchaeota and the group represented by Candidatus Nitrososphaera were dominant in both the control and treated samples. Other archaeal genera viz. Methanosarcina and Bathyarchaeia showed a slight decrease in relative abundance of control (0.5 %) compared to the treated soil (0.7 %). Irrespective of treatments, the majority of bacterial genera comprised unclassified and uncultured species, accounting for >64-75 % in the control group and over 78.29 % in the treated samples. Members of Vicinamibacteraceae, Bacillus and Bryobacter were dominant in control samples. Dominant fungal genera belonging to unclassified groups comprised Curvularia, Aspergillus, and Emericellopsis in the control group, whereas Paraphysoderma and Emericellopsis in the herbicide-treated groups. Inconsistent response of soil properties and microbial community composition is evident from the present study, suggesting that the recommended dose of herbicides might not result in any significant change in microbial community composition. The findings of this investigation will help in the formulation of a framework for risk assessment and maintaining sustainable rice cultivation in herbicide- amended soils.


Assuntos
Herbicidas , Microbiota , Oryza , Solo/química , Herbicidas/análise , Oryza/genética , RNA Ribossômico 16S/genética , Archaea/genética , Bactérias/genética , Acidobacteria/genética , Microbiologia do Solo
6.
Life Sci ; 336: 122317, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040245

RESUMO

Interstitial cystitis (IC), also called painful bladder syndrome (PBS), is 2 to 5 times more common in women than in men, yet its cause and pathogenesis remain unclear. In our study using the cyclophosphamide (CYP)-induced mouse model of cystitis, histological evaluation of the urinary bladder (UB) lamina propria (LP) showed immune cell infiltrations, indicating moderate to severe inflammation. In this study, we noticed a differential expression of a subset of microRNAs (miRs) in the UB cells (UBs) of CYP-induced cystitis as compared to the control. UB inflammatory scores and inflammatory signaling were also elevated in CYP-induced cystitis as compared to control. We identified eight UBs miRs that exhibited altered expression after CYP induction and are predicted to have a role in inflammation and smooth muscle function (miRs-34c-5p, -34b-3p, -212-3p, -449a-5p, -21a-3p, -376b-3p, -376b-5p and - 409-5p). Further analysis using ELISA for inflammatory markers and real-time PCR (RT-PCR) for differentially enriched miRs identified miR-34c as a potential target for the suppression of UB inflammation in cystitis. Blocking miR-34c by antagomir ex vivo reduced STAT3, TGF-ß1, and VEGF expression in the UBs, which was induced during cystitis as compared to control. Interestingly, miR-34c inhibition also downregulated ROCK2 but elevated ROCK1 expression in bladder and detrusor cells. Thus, the present study shows that targeting miR-34c can mitigate the STAT3, TGF-ß, and VEGF, inflammatory signaling in UB, and suppress ROCK2 expression in UBs to effectively suppress the inflammatory response in cystitis. This study highlights miR-34c as a potential biomarker and/or serves as the basis for new therapies for the treatment of cystitis.


Assuntos
Cistite Intersticial , Cistite , MicroRNAs , Masculino , Camundongos , Animais , Humanos , Feminino , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cistite/induzido quimicamente , Bexiga Urinária/metabolismo , Cistite Intersticial/genética , Cistite Intersticial/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ciclofosfamida/efeitos adversos , Inflamação/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
7.
Exp Biol Med (Maywood) ; 248(22): 2151-2166, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38058006

RESUMO

Neurological disorders are a major global challenge, which counts for a substantial slice of disease burden around the globe. In these, the challenging landscape of central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuro-AIDS, demands innovative and novel therapeutic approaches. Curcumin, a versatile natural compound with antioxidant and anti-inflammatory properties, shows great potential as a CNS adjuvant therapy. However, its limited bioavailability and suboptimal permeability to the blood-brain barrier (BBB) hamper the therapeutic efficacy of curcumin. This review explores how nanocarrier facilitates curcumin delivery, which has shown therapeutic efficacy for various non-CNS diseases, for example, cancers, and can also revolutionize the treatment outcomes in patients with CNS diseases. Toward this, intranasal administration of curcumin as a non-invasive CNS drug delivery route can also aid its therapeutic outcomes as an adjuvant therapy for CNS diseases. Intranasal delivery of nanocarriers with curcumin improves the bioavailability of curcumin and its BBB permeability, which is instrumental in promoting its therapeutic potential. Furthermore, curcumin's inhibitory effect on efflux transporters will help to enhance the BBB and cellular permeability of various CNS drugs. The therapeutic potential of curcumin as an adjuvant has the potential to yield synergistic effects with CNS drugs and will help to reduce CNS drug doses and improve their safety profile. Taken together, this approach holds a promise for reshaping CNS disease management by maximizing curcumin's and other drugs' therapeutic benefits.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso Central , Curcumina , Doença de Parkinson , Humanos , Curcumina/uso terapêutico , Curcumina/farmacologia , Barreira Hematoencefálica , Doença de Alzheimer/tratamento farmacológico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos
8.
NeuroImmune Pharm Ther ; 2(4): 365-374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058997

RESUMO

Objectives: HIV suppression in brain viral reservoirs, especially macrophages, and microglia is critical to suppress HIV neuropathogenesis and subsequently HIV-associated neurocognitive disorders (HAND). Since most antiretroviral therapy (ART) drugs do not achieve optimal therapeutic concentrations in the brain and can cause neurotoxicity, an alternative/adjuvant therapy is needed to suppress HIV neuropathogenesis. In this study, our objectives were to examine the anti-HIV, antioxidant, and anti-inflammatory potential of resveratrol (RES) and its synthetic analogs 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD) and 4-(E)-{(4-hydroxyphenylimino)-methylbenzene,1,2-diol} (HPIMBD) in HIV-infected macrophages. Methods: We used HIV replication (viral load), oxidative stress (reactive oxygen species and antioxidant enzymes), and inflammatory response (pro- and anti-inflammatory cytokines/chemokines) assays to achieve the objectives of the study. Results: Our results showed that RES and its analogs HPIMBD and TIMBD at 25 µM concentration significantly decrease HIV replication in both primary monocyte-derived macrophages and U1-differentiated macrophages. Moreover, RES and its analogs do not induce any cytotoxicity for up to 3 days in these cells. Further, treatment with RES and TIMBD (25 µM) also reduced the levels of reactive oxygen species without affecting the expression of antioxidant enzymes, SOD1, and catalase in U1 macrophages. Besides, RES and HPIMBD treatment inhibited the proinflammatory cytokines and chemokines in U1 macrophages, which was associated with decreased levels of anti-inflammatory cytokines. Importantly, our western blot experiments show that RES also decreases cellular proinflammatory cytokine IL-1ß, which is usually elevated in both myeloid and neuronal cells upon HIV infection. Conclusions: Taken together, our results suggest that RES and/or its analogs are important adjuvants that may be used not only to suppress HIV but also oxidative stress and inflammation in brain viral reservoirs.

9.
Sci Rep ; 13(1): 19864, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964023

RESUMO

In this study, we investigated the potential of using curcumin (CUR) as an adjuvant to enhance the delivery of antiretroviral drug elvitegravir (EVG) across the BBB, and alleviate oxidative stress and inflammatory response, which are the major hallmark of HIV neuropathogenesis. In a mouse model, we compared the biodistribution of EVG alone and in combination with CUR using intraperitoneal (IP) and intranasal (IN) routes. IN administration showed a significantly higher accumulation of EVG in the brain, while both IP and IN routes led to increased EVG levels in the lungs and liver. The addition of CUR further enhanced EVG brain delivery, especially when administered via the IN route. The expression of neural marker proteins, synaptophysin, L1CAM, NeuN, and GFAP was not significantly altered by EVG or CUR alone or their combination, indicating preserved neural homeostasis. After establishing improved brain concentration and safety of CUR-adjuvanted EVG in mice in acute treatment, we studied the effect of this treatment in HIV-infected U1 macrophages. In U1 macrophages, we also observed that the addition of CUR enhanced the intracellular concentration of EVG. The total area under the curve (AUCtot) for EVG was significantly higher in the presence of CUR. We also evaluated the effects of CUR on oxidative stress and antioxidant capacity in EVG-treated U1 macrophages. CUR reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) levels and elevated antioxidant enzyme expression. Furthermore, the combination of CUR and EVG exhibited a significant reduction in proinflammatory cytokines (TNFα, IL-1ß, IL-18) and chemokines (RANTES, MCP-1) in U1 macrophages. Additionally, western blot analysis confirmed the decreased expression of IL-1ß and TNF-α in EVG + CUR-treated cells. These findings suggest the potential of CUR to enhance EVG permeability to the brain and subsequent efficacy of EVG, including HIV neuropathogenesis.


Assuntos
Curcumina , Infecções por HIV , Camundongos , Animais , Curcumina/farmacologia , Antioxidantes/farmacologia , Distribuição Tecidual , Estresse Oxidativo , Fator de Necrose Tumoral alfa/farmacologia , Infecções por HIV/tratamento farmacológico
10.
PLoS One ; 18(10): e0292663, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883422

RESUMO

The lymphatic network is pivotal for various physiological functions in the human body. Accumulated evidence supports the role of therapeutic lymphangiogenesis in the treatment of several pathologies. Endogenous gasotransmitter, hydrogen sulfide (H2S) has been extensively studied for its potential as a pro-angiogenic factor and vascular function modulator. However, the role of H2S in governing lymphatic vessel formation, and underlying molecular mechanisms are understudied. The present study was designed to investigate the effects of H2S donor sodium hydrogen sulfide (NaHS) on lymphatic vascularization and pro-angiogenic signaling pathways using both in vitro and in vivo approaches. In vitro dose-response experiments showed increased proliferation and tube formation by NaHS-treated human lymphatic endothelial cells (LECs) compared with control cells. Immunoblotting performed with LEC lysates prepared after time-course NaHS treatment demonstrated increased activation of ERK1/2, AKT and eNOS after 20 min of NaHS stimulation. Further, NaHS treatment induced nitric oxide production, reduced reactive oxygen species generation, and promoted cell cycle in LECs. Additional cell cycle analysis showed that NaHS treatment abrogates oxidized LDL-induced cell cycle arrest in LECs. The results of in vivo Matrigel plug assay revealed increased lymphatic vessel density in Matrigel plugs containing NaHS compared with control plugs, however, no significant differences in angiogenesis and immune cell infiltration were observed. Collectively, these findings suggest that H2S donor NaHS promotes lymphatic vessel formation both in vitro and in vivo and may be utilized to promote reparative lymphangiogenesis to alleviate lymphatic dysfunction-related disorders.


Assuntos
Sulfeto de Hidrogênio , Vasos Linfáticos , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37792177

RESUMO

Heavy metals (HMs) at a concentration above the threshold level act as environmental pollutants and very often threaten the agricultural productivity globally. Finding affordable and environmentally sustainable deliverables to address this issue is therefore a top focus. Phytohormones alleviate the HMs-induced toxicity and positively influence the plant growth. Considering the importance of phytohormones, the present study aimed to assess the effect of 24-epibrassinolide (24-EBL; 10 µM) as seed soaking treatment on growth performance of Zea mays (L.) contaminated separately with increasing concentrations (50-400 mg.kg-1) of lead (Pb) and cadmium (Cd). With increasing metal concentrations, growth and plant biometric criteria were reduced. For instance, Cd at 400 mg.kg-1 soil reduced the germination efficiency (56%), root (77%) and shoot (69%) dry weight, total chlorophyll (64%), and carotenoid content (45%). Contrarily, both HMs caused increase in stress biomarkers and antioxidant enzymes in seedling. However, exogenous administration of 24-EBL significantly enhanced the growth attributes, photosynthetic pigments, proline, MDA, and antioxidant enzyme activity while reducing the harmful effects of HMs stress on Z. mays. For instance, 24-EBL (10 µM) improved the germination percentage, root biomass, chl a, chl b, total chlorophyll, and carotenoid content by 16, 21, 17, 34, 18, and 15%, respectively, in 50 mg.Pb.kg-1 soil-treated Z. mays plants. Furthermore, the amounts of proline, MDA, and antioxidant enzymes in foliage of Z. mays were interestingly and dramatically lowered by 24-EBL application. Uptake of metals in plant organs was significantly reduced when 24-EBL was applied to Pb- and Cd-treated Z. mays. The recent findings help us better understand how 24-EBL regulates growth and development of Z. mays as well as how it boosts HMs' resilience, which could increase the possibility of employing 24-EBL to increase Z. mays productivity. Thus, the present findings confirmed the potentiality of pre-soaking the seed in 24-EBL solution that neutralizes the toxic effects of heavy metals in Z. mays plants. Therefore, it is suggested that applying phytohormones including 24-EBL in removal of heavy metal stress in plants is the best possible solution in sustainable agriculture.

12.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762417

RESUMO

Soluble cell adhesion molecules (sCAMs) are secreted ectodomain fragments of surface adhesion molecules, ICAM1 and VCAM1. sCAMs have diverse immune functions beyond their primary function, impacting immune cell recruitment and activation. Elevated sVCAM1 levels have been found to be associated with poor cardiovascular disease (CVD) outcomes, supporting VCAM1's role as a potential diagnostic marker and therapeutic target. Inhibiting sVCAM1's release or its interaction with immune cells could offer cardioprotection in conditions such as diabetes. Membrane-bound surface adhesion molecules are widely expressed in a wide variety of cell types with higher expression in endothelial cells (ECs). Still, the source of sCAMs in the circulation is not clear. Hypothesizing that endothelial cells (ECs) could be a potential source of sCAMs, this study investigated whether dysfunctional EC signaling mechanisms during diabetes cause VCAM1 ectodomain shedding. Our results from samples from an inducible diabetic mouse model revealed increased sVCAM1 plasma levels in diabetes. Protein analysis indicated upregulated VCAM1 expression and metalloproteases ADAM10 and ADAM17 in diabetic ECs. ADAMs are known for proteolytic cleavage of adhesion molecules, contributing to inflammation. GSK3ß, implicated in EC VCAM1 expression, was found to be activated in diabetic ECs. GSK3ß activation in control ECs increased ADAM10/17 and VCAM1. A GSK3ß inhibitor reduced active GSK3ß and VCAM1 ectodomain shedding. These findings suggest diabetic ECs with elevated GSK3ß activity led to VCAM1 upregulation and ADAM10/17-mediated sVCAM1 shedding. This mechanism underscores the potential therapeutic role of GSK3ß inhibition in reducing the levels of circulating sVCAM1. The complex roles of sCAMs extend well beyond CVD. Thus, unraveling the intricate involvement of sCAMs in the initiation and progression of vascular disease, particularly in diabetes, holds significant therapeutic potential.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Animais , Camundongos , Proteína ADAM10 , Células Endoteliais , Glicogênio Sintase Quinase 3 beta , Molécula 1 de Adesão de Célula Vascular
13.
Res Sq ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609211

RESUMO

In this study, we investigated the potential of using curcumin (CUR) as an adjuvant to enhance the delivery of antiretroviral drug elvitegravir (EVG) across the BBB, and alleviate oxidative stress and inflammatory response, which are the major hallmark of HIV neuropathogenesis. In a mouse model, we compared the biodistribution of EVG alone and in combination with CUR using intraperitoneal (IP) and intranasal (IN) routes. IN administration showed a significantly higher accumulation of EVG in the brain, while both IP and IN routes led to increased EVG levels in the lungs and liver. The addition of CUR further enhanced EVG brain delivery, especially when administered via the IN route. The expression of neural marker proteins, synaptophysin, L1CAM, NeuN, and GFAP was not significantly altered by EVG or CUR alone or their combination, indicating preserved neural homeostasis. After establishing improved brain concentration and safety of CUR-adjuvanted EVG in mice in acute treatment, we studied the effect of this treatment in HIV-infected U1 macrophages. In U1 macrophages, we also observed that the addition of CUR enhanced the intracellular concentration of EVG. The total area under the curve (AUCtot) for EVG was significantly higher in the presence of CUR. We also evaluated the effects of CUR on oxidative stress and antioxidant capacity in EVG-treated U1 macrophages. CUR reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) levels and elevated antioxidant enzyme expression. Furthermore, the combination of CUR and EVG exhibited a significant reduction in proinflammatory cytokines (TNFα, IL-1ß, IL-18) and chemokines (RANTES, MCP-1) in U1 macrophages. Additionally, western blot analysis confirmed the decreased expression of IL-1ß and TNF-α in EVG + CUR-treated cells. These findings suggest the potential of CUR to enhance EVG permeability to the brain and subsequent efficacy of EVG, including HIV neuropathogenesis.

14.
Front Microbiol ; 14: 1210938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469421

RESUMO

Micronutrient deficiency is a serious health issue in resource-poor human populations worldwide, which is responsible for the death of millions of women and underage children in most developing countries. Zinc (Zn) malnutrition in middle- and lower-class families is rampant when daily calorie intake of staple cereals contains extremely low concentrations of micronutrients, especially Zn and Fe. Looking at the importance of the problem, the present investigation aimed to enhance the growth, yield, nutrient status, and biofortification of wheat crop by inoculation of native zinc-solubilizing Bacillus spp. in conjunction with soil-applied fertilizers (NPK) and zinc phosphate in saline soil. In this study, 175 bacterial isolates were recovered from the rhizosphere of wheat grown in the eastern parts of the Indo-Gangetic Plain of India. These isolates were further screened for Zn solubilization potential using sparingly insoluble zinc carbonate (ZnCO3), zinc oxide (ZnO), and zinc phosphate {Zn3(PO4)2} as a source of Zn under in vitro conditions. Of 175 bacterial isolates, 42 were found to solubilize either one or two or all the three insoluble Zn compounds, and subsequently, these isolates were identified based on 16S rRNA gene sequences. Based on zone halo diameter, solubilization efficiency, and amount of solubilized zinc, six potential bacterial strains, i.e., Bacillus altitudinis AJW-3, B. subtilis ABW-30, B. megaterium CHW-22, B. licheniformis MJW-38, Brevibacillus borstelensis CHW-2, and B. xiamenensis BLW-7, were further shortlisted for pot- and field-level evaluation in wheat crop. The results of the present investigation clearly indicated that these inoculants not only increase plant growth but also enhance the yield and yield attributes. Furthermore, bacterial inoculation also enhanced available nutrients and microbial activity in the wheat rhizosphere under pot experiments. It was observed that the application of B. megaterium CHW-22 significantly increased the Zn content in wheat straw and grains along with other nutrients (N, P, K, Fe, Cu, and Mn) followed by B. licheniformis MJW-38 as compared to other inoculants. By and large, similar observations were recorded under field conditions. Interestingly, when comparing the nutrient use efficiency (NUE) of wheat, bacterial inoculants showed their potential in enhancing the NUE in a greater way, which was further confirmed by correlation and principal component analyses. This study apparently provides evidence of Zn biofortification in wheat upon bacterial inoculation in conjunction with chemical fertilizers and zinc phosphate in degraded soil under both nethouse and field conditions.

15.
Environ Res ; 236(Pt 1): 116724, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37500042

RESUMO

Reclamation of pesticide-polluted lands has long been a difficult endeavour. The use of synthetic pesticides could not be restricted due to rising agricultural demand. Pesticide toxicity has become a pressing agronomic problem due to its adverse impact on agroecosystems, agricultural output, and consequently food security and safety. Among different techniques used for the reclamation of pesticide-polluted sites, microbial bioremediation is an eco-friendly approach, which focuses on the application of resilient plant growth promoting rhizobacteria (PGPR) that may transform or degrade chemical pesticides to innocuous forms. Such pesticide-resilient PGPR has demonstrated favourable effects on soil-plant systems, even in pesticide-contaminated environments, by degrading pesticides, providing macro-and micronutrients, and secreting active but variable secondary metabolites like-phytohormones, siderophores, ACC deaminase, etc. This review critically aims to advance mechanistic understanding related to the reduction of phytotoxicity of pesticides via the use of microbe-mediated remediation techniques leading to crop optimization in pesticide-stressed soils. The literature surveyed and data presented herein are extremely useful, offering agronomists-and crop protectionists microbes-assisted remedial strategies for affordably enhancing crop productivity in pesticide-stressed soils.


Assuntos
Praguicidas , Poluentes do Solo , Praguicidas/toxicidade , Consórcios Microbianos , Agricultura/métodos , Solo , Reguladores de Crescimento de Plantas , Poluentes do Solo/análise
16.
Front Immunol ; 14: 1213415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334370

RESUMO

Background: Obesity is a multifactorial disease characterized by an enhanced amount of fat and energy storage in adipose tissue (AT). Obesity appears to promote and maintain low-grade chronic inflammation by activating a subset of inflammatory T cells, macrophages, and other immune cells that infiltrate the AT. Maintenance of AT inflammation during obesity involves regulation by microRNAs (miRs), which also regulate the expression of genes implicated in adipocyte differentiation. This study aims to use ex vivo and in vitro approaches to evaluate the role and mechanism of miR-10a-3p in adipose inflammation and adipogenesis. Methods: Wild-type BL/6 mice were placed on normal (ND) and high-fat diet (HFD) for 12 weeks and their obesity phenotype, inflammatory genes, and miRs expression were examined in the AT. We also used differentiated 3T3-L1 adipocytes for mechanistic in vitro studies. Results: Microarray analysis allowed us to identify an altered set of miRs in the AT immune cells and Ingenuity pathway analysis (IPA) prediction demonstrated that miR-10a-3p expression was downregulated in AT immune cells in the HFD group as compared to ND. A molecular mimic of miR-10a-3p reduced expression of inflammatory M1 macrophages, cytokines, and chemokines, including transforming growth factor-beta 1 (TGF-ß1), transcription factor Krüppel-like factor 4 (KLF4), and interleukin 17F (IL-17F) and induced expression of forkhead box P3 (FoxP3) in the immune cells isolated from AT of HFD-fed mice as compared to ND. In differentiated 3T3-L1 adipocytes, the miR-10a-3p mimics also reduced expression of proinflammatory genes and lipid accumulation, which plays a role in the dysregulation of AT function. In these cells, overexpression of miR-10a-3p reduced the expression of TGF-ß1, Smad3, CHOP-10, and fatty acid synthase (FASN), relative to the control scramble miRs. Conclusion: Our findings suggest that miR-10a-3p mimic mediates the TGF-ß1/Smad3 signaling to improve metabolic markers and adipose inflammation. This study provides a new opportunity for the development of miR-10a-3p as a novel therapeutic for adipose inflammation, and its associated metabolic disorders.


Assuntos
Adiposidade , MicroRNAs , Animais , Camundongos , Adiposidade/genética , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 43(7): 1234-1250, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259865

RESUMO

BACKGROUND: TSP1 (thrombospondin-1)-a well-known angiogenesis inhibitor-mediates differential effects via interacting with cell surface receptors including CD36 (cluster of differentiation) and CD47. However, the role of TSP1 in regulating lymphangiogenesis is not clear. Our previous study suggested the importance of cell-specific CD47 blockade in limiting atherosclerosis. Further, our experiments revealed CD47 as a dominant TSP1 receptor in lymphatic endothelial cells (LECs). As the lymphatic vasculature is functionally linked to atherosclerosis, we aimed to investigate the effects of LEC TSP1-CD47 signaling inhibition on lymphangiogenesis and atherosclerosis. METHODS: Murine atherosclerotic and nonatherosclerotic arteries were utilized to investigate TSP1 expression using Western blotting and immunostaining. LEC-specific knockout mice were used to determine the in vivo role of LEC Cd47 in lymphangiogenesis and atherosclerosis. Various in vitro cell-based assays, in vivo Matrigel plug implantation, molecular biological techniques, and immunohistological approaches were used to evaluate the underlying signaling mechanisms. RESULTS: Elevated TSP1 expression was observed in mouse atherosclerotic aortic tissue compared with nonatherosclerotic control tissue. TSP1 at pathological concentrations suppressed both in vitro and in vivo lymphangiogenesis. Mechanistically, TSP1 inhibited VEGF (vascular endothelial growth factor)-C-induced AKT and eNOS activation in LEC and attenuated NO (nitric oxide) production. Further, CD47 silencing in LEC prevented the effects of TSP1 on lymphangiogenic AKT-eNOS signaling and lymphangiogenesis. Atheroprone AAV (adeno-associated virus) 8-PCSK9-injected LEC-specific Cd47 knockout mice (Cd47ΔLEC) had reduced atherosclerosis in both aorta and aortic root compared with control mice (Cd47ΔWT). However, no differences in metabolic parameters including body weight, plasma total cholesterol levels, and fasting blood glucose were observed. Additional immunostaining experiments performed on aortic root cross-sections indicated higher lymphatic vessel density in Cd47ΔLEC mice in comparison to controls. CONCLUSIONS: These findings demonstrate that TSP1 inhibits lymphangiogenesis via activation of CD47 in LEC, and loss of LEC Cd47 attenuates atherosclerotic lesion formation. Collectively, these results identify LEC CD47 as a potential therapeutic target in atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Camundongos Knockout , Pró-Proteína Convertase 9/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Front Microbiol ; 14: 1132770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180266

RESUMO

Growth and productivity of crop plants worldwide are often adversely affected by anthropogenic and natural stresses. Both biotic and abiotic stresses may impact future food security and sustainability; global climate change will only exacerbate the threat. Nearly all stresses induce ethylene production in plants, which is detrimental to their growth and survival when present at higher concentrations. Consequently, management of ethylene production in plants is becoming an attractive option for countering the stress hormone and its effect on crop yield and productivity. In plants, ACC (1-aminocyclopropane-1-carboxylate) serves as a precursor for ethylene production. Soil microorganisms and root-associated plant growth promoting rhizobacteria (PGPR) that possess ACC deaminase activity regulate growth and development of plants under harsh environmental conditions by limiting ethylene levels in plants; this enzyme is, therefore, often designated as a "stress modulator." TheACC deaminase enzyme, encoded by the AcdS gene, is tightly controlled and regulated depending upon environmental conditions. Gene regulatory components of AcdS are made up of the LRP protein-coding regulatory gene and other regulatory components that are activated via distinct mechanisms under aerobic and anaerobic conditions. ACC deaminase-positive PGPR strains can intensively promote growth and development of crops being cultivated under abiotic stresses including salt stress, water deficit, waterlogging, temperature extremes, and presence of heavy metals, pesticides and other organic contaminants. Strategies for combating environmental stresses in plants, and improving growth by introducing the acdS gene into crop plants via bacteria, have been investigated. In the recent past, some rapid methods and cutting-edge technologies based on molecular biotechnology and omics approaches involving proteomics, transcriptomics, metagenomics, and next generation sequencing (NGS) have been proposed to reveal the variety and potential of ACC deaminase-producing PGPR that thrive under external stresses. Multiple stress-tolerant ACC deaminase-producing PGPR strains have demonstrated great promise in providing plant resistance/tolerance to various stressors and, therefore, it could be advantageous over other soil/plant microbiome that can flourish under stressed environments.

19.
Front Microbiol ; 14: 1104490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200920

RESUMO

Rhizosphere is the battlefield of beneficial and harmful (so called phytopathogens) microorganisms. Moreover, these microbial communities are struggling for their existence in the soil and playing key roles in plant growth, mineralization, nutrient cycling and ecosystem functioning. In the last few decades, some consistent pattern have been detected so far that link soil community composition and functions with plant growth and development; however, it has not been studied in detail. AM fungi are model organisms, besides potential role in nutrient cycling; they modulate biochemical pathways directly or indirectly which lead to better plant growth under biotic and abiotic stress conditions. In the present investigations, we have elucidated the AM fungi-mediated activation of plant defense responses against Meloidogyne graminicola causing root-knot disease in direct seeded rice (Oryza sativa L.). The study describes the multifarious effects of Funneliformis mosseae, Rhizophagus fasciculatus, and Rhizophagus intraradices inoculated individually or in combination under glasshouse conditions in rice plants. It was found that F. mosseae, R. fasciculatus and R. intraradices when applied individually or in combination modulated the biochemical and molecular mechanisms in the susceptible and resistant inbred lines of rice. AM inoculation significantly increased various plant growth attributes in plants with simultaneous decrease in the root-knot intensity. Among these, the combined application of F. mosseae, R. fasciculatus, and R. intraradices was found to enhance the accumulation and activities of biomolecules and enzymes related to defense priming as well as antioxidation in the susceptible and resistant inbred lines of rice pre-challenged with M. graminicola. The application of F. mosseae, R. fasciculatus and R. intraradices, induced the key genes involved in plant defense and signaling and it has been demonstrated for the first time. Results of the present investigation advocated that the application of F. mosseae, R. fasciculatus and R. intraradices, particularly a combination of all three, not only helped in the control of root-knot nematodes but also increased plant growth as well as enhances the gene expression in rice. Thus, it proved to be an excellent biocontrol as well as plant growth-promoting agent in rice even when the crop is under biotic stress of the root-knot nematode, M. graminicola.

20.
Chaos ; 33(3): 033110, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003822

RESUMO

We present the morphological evolution and fractal characterizations of CaF2 thin-film surfaces modified by bombardment with 100 MeV Au+8 ions at various fluences. Atomic force microscopy (AFM) combined with line profile and two-dimensional power spectral density (2D-PSD) analysis was utilized to investigate the evolution of surface morphology as a function of fluence. The AFM images were utilized to investigate the relationship between fractal dimension, roughness exponent, lateral correlation length, and ion fluence. The surface erosion owing to sputtering was depicted using Rutherford backscattering spectrometry. The structural characteristics' dependency on fluence was explored with the help of glancing angle x-ray diffraction measurements on virgin and irradiated samples. Tensile stress calculated using a peak shift in the glancing angle x-ray diffractogram showed an increase in tensile stress with fluence that caused the surface to crack after the fracture strength of the surface was crossed. 2D-PSD analysis signified the role of sputtering over surface diffusion for the observed surface modifications. Fractal dimensions first increased and then decreased with ion fluence. The lateral correlation length decreased, while the roughness exponent increased with fluence after the threshold value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...