Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864476

RESUMO

Biomaterials are used as scaffolds in bone regeneration to facilitate the restoration of bone tissues. The local immune microenvironment affects bone repair but the role of immune response in biomaterial-facilitated osteogenesis has been largely overlooked and it presents a major knowledge gap in the field. Nanomaterials that can modulate M1 to M2 macrophage polarization and, thus, promote bone repair are known. This study investigates a novel approach to accelerate bone healing by using acemannan coated, cobalt-doped biphasic calcium phosphate nanoparticles to promote osteogenesis and modulate macrophage polarization to provide a prohealing microenvironment for bone regeneration. Different concentrations of cobalt were doped in biphasic calcium phosphate nanoparticles, which were further coated with acemannan polymer and characterized. The nanoparticles showed >90% cell viability and enhanced cell proliferation along with osteogenic differentiation as demonstrated by the enhanced alkaline phosphatase activity and osteogenic calcium deposition. The morphology of MC3T3-E1 cells remained unchanged even after treatment with nanoparticles. Acemannan coated nanoparticles were also able to decrease the expression of M1 markers, iNOS, and CD68 and enhance the expression of M2 markers, CD206, CD163, and Arg-1 as indicated by RT-qPCR, flow cytometry, and ICC studies. The findings show that acemannan coated nanoparticles can create a supportive immune milieu by inducing and promoting the release of osteogenic markers, and by causing a reduction in inflammatory markers, thus helping in efficient bone regeneration. As per our knowledge, this is the first study showing the combined effect of acemannan and cobalt for bone regeneration using immunomodulation. The work presents a novel approach for enhancing osteogenesis and macrophage polarization, thus, offering a potent strategy for effective bone regeneration.

2.
Biomacromolecules ; 25(4): 2286-2301, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502906

RESUMO

Bone defects show a slow rate of osteoconduction and imperfect reconstruction, and the current treatment strategies to treat bone defects suffer from limitations like immunogenicity, lack of cell adhesion, and the absence of osteogenic activity. In this context, bioactive supramolecular peptides and peptide gels offer unique opportunities to develop biomaterials that can play a dominant role in the biomineralization of bone tissues and promote bone formation. In this article, we have demonstrated the potential of six tetrapeptides for specific binding to hydroxyapatite (HAp), a major inorganic component of the bone, and their effect on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs). We adopted a simplistic approach of rationally designing amphiphilic peptides by incorporating amino acids, Ser, pSer, Pro, Hyp, Asp, and Glu, which are present in either collagenous or noncollagenous proteins and render properties like antioxidant, calcification, and mineralization. A total of six tetrapeptides, Trp-Trp-His-Ser (WWHS), Trp-Trp-His-pSer (WWHJ), Trp-Trp-His-Pro (WWHP), Trp-Trp-His-Hyp (WWHO), Trp-Trp-His-Asp (WWHD), and Trp-Trp-His-Glu (WWHE), were synthesized. Four peptides were found to self-assemble into nanofibrillar gels resembling the extracellular matrix (ECM), and the remaining two peptides (WWHJ, WWHP) self-assembled into nanorods. The peptides showed excellent cell adhesion, encapsulation, proliferation, and migration and induced the differentiation of mesenchymal stem cells (MSCs), as evident from the enhanced mineralization, resulting from the upregulation of osteogenic markers, RUNX 2, COL I, OPN, and OCN, alkaline phosphatase (ALP) production, and calcium deposition. The peptides also induced the downregulation of inflammatory markers, TNF-α and iNOS, and the upregulation of the anti-inflammatory marker, IL-10, resulting in M2 macrophage polarization. RANKL and TRAP genes were downregulated in a coculture system of MC3T3-E1 and RAW 264.7 cells, implying that peptides promote osteogenesis and inhibit osteoclastogenesis. The peptide-based biomaterials developed in this work can enhance bone regeneration capacity and show strong potential as scaffolds for bone tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Aminoácidos/metabolismo , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Diferenciação Celular , Durapatita/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Géis/farmacologia , Células Cultivadas
3.
Int J Biol Macromol ; 249: 126049, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37517748

RESUMO

The capability of bacteria to withstand the misuse of antibiotics leads to the generation of multi-drug resistant strains, posing a new challenge to curb wound infections. The biological macromolecules, due to their biocompatibility, biodegradability, and antimicrobial properties, have been explored for a variety of antimicrobial and therapeutic purposes. This work reports that a single-step oxidation of pullulan polymer leads to the formation of oxidized pullulan (o-pullulan), which shows striking antibacterial and antibiofilm activities against the Gram-positive bacteria, Staphylococcus aureus, implicated in wound-related infections. Oxidation of pullulan generates 28 % aldehyde groups (3.462 mmol/g) which exerted 97 % bactericidal activity against S. aureus by targeting cell wall-associated membrane protein SpA (Staphylococcal protein A). The molecular docking, gene silencing, and fluorescence quenching studies revealed a direct binding of o-pullulan with the B and C domains of SpA, which alters the membrane potential and inhibits Ca2+-Mg2+-ATPase pumps. O-pullulan also exhibited scavenging activity against intracellular reactive oxygen species (ROS), and non-immunotoxic activity and was found to be non-toxic to mammalian cells. Thus, o-pullulan shows great promise as an antimicrobial polymer against S. aureus for chronic wound management.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Staphylococcus aureus , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Mamíferos
4.
ACS Biomater Sci Eng ; 9(6): 3535-3545, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172017

RESUMO

Osteoporosis is a chronic bone disorder characterized by decreased bone mass, leading to brittle bones and fractures. Oxidative stress has been identified as the most profound trigger for the initiation and progression of osteoporosis. Current treatment strategies do not induce new bone formation and fail to address a high level of reactive oxygen species (ROS). Mesoporous silica nanoparticles (MSNs) have been explored in bone tissue regeneration owing to their inherent osteogenic property, but they lack antioxidant and cell adhesion properties, required in such applications. We have developed thiolated, bioactive mesoporous silica nanoparticles (MSN-SH) to address this challenge. MSNs were fabricated using the Stöber method, and 11% of the surface was functionalized post-synthesis with thiol groups using MPTMS to obtain MSN-SH. The particle size measured by the dynamic light scattering technique was found to be around 300 nm. The surface morphology was investigated using HR-TEM, and their physical and chemical properties were characterized using various spectroscopic techniques. They exhibited more than 90% antioxidant activity, neutralized ROS formed in cells, and provided protection against ROS-induced cell damage. The cell viability assay in murine osteoblast precursor cells (MC3T3) showed that MSN-SH is cell-proliferative in nature with 140% cell viability. Osteogenic potential was evaluated by measuring the ALP activities, calcium deposition, and gene expression levels of osteogenic markers, such as RUNX2, ALP, OCN, and OPN, and results revealed that MSN-SH increases calcium deposition and induces osteogenesis through upregulation of osteogenic genes and markers without the involvement of any osteogenic supplements. Besides promoting osteogenesis, MSN-SH was found to inhibit osteoclastogenesis. The nanomaterial was found to be regenerative in nature, and it stimulated migration of osteoblast cells and caused a complete wound closure within 48 h. We were able to achieve a multifunctional nanomaterial by simply modifying the surface. MSNs have been explored for bone tissue engineering/osteoporosis as a composite system incorporating metals, like gold and cerium, or as a nanocarrier loaded with growth factors or active drugs. This study offers a simple and economical method to enhance the existing properties of MSNs and impart new activities by a single-step surface modification. It can be concluded that MSN-SH holds promise as a complementary and alternate treatment for osteoporosis along with the standardized therapy.


Assuntos
Nanopartículas , Osteoporose , Camundongos , Animais , Osteogênese , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Dióxido de Silício/química , Cálcio , Espécies Reativas de Oxigênio , Nanopartículas/uso terapêutico , Nanopartículas/química , Osteoporose/tratamento farmacológico
5.
ACS Biomater Sci Eng ; 9(5): 2647-2662, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097124

RESUMO

Chronic wounds are a major healthcare challenge owing to their complex healing mechanism and number of impediments to the healing process, like infections, unregulated inflammation, impaired cellular functions, poor angiogenesis, and enhanced protease activity. Current topical care strategies, such as surgical debridement, absorption of exudates, drug-loaded hydrogels for infection and inflammation management, and exogenous supply of growth factors for angiogenesis and cell proliferation, slow the progression of wounds and reduce patient suffering but suffer from low overall cure rates. Therefore, we have developed a proteolytically stable, multifunctional nanoparticle loaded-peptide gel with inherent anti-inflammatory, antibacterial, and pro-angiogenic properties to provide a favorable wound healing milieu by restoring impaired cellular functions. We have fabricated a self-assembled, lauric acid-peptide conjugate gel, LA-LLys-DPhe-LLys-NH2, loaded with yttrium oxide (Y2O3) nanoparticles (NLG). Gel formed a nanofibrous structure, and nanoparticles were passively entrapped within the network. The surface morphology, stability, viscoelastic, and self-healing characteristics of gels were characterized. It showed a high stability against degradation by proteolytic enzymes and highly potent antibacterial activities against E. coli and S. aureus due to the presence of positively charged side chains of lysine in the peptide chain. It also exhibited an excellent antioxidant activity as well as ability to stimulate cell proliferation in murine fibroblast (L929) cells and human umbilical vein endothelial cells (HUVECs). The incorporation of nanoparticles promoted angiogenesis by upregulating pro-angiogenic genes, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF2), and epidermal growth factor (EGFR), and the gel caused complete wound closure in cells. In summary, the Y2O3 nanoparticle-loaded lauric acid-peptide conjugate gel is able to elicit the desired tissue regeneration responses and, therefore, has a strong potential as a matrix for the treatment of chronic wounds.


Assuntos
Nanopartículas Metálicas , Humanos , Linhagem Celular , Animais , Nanopartículas Metálicas/química , Peptídeos Opioides/química , Di-Hidrotestosterona/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Cicatrização , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Sobrevivência Celular
6.
Eur Biophys J ; 52(1-2): 91-100, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36929427

RESUMO

Lithium has been the treatment of choice for patients with bipolar disorder. However, lithium overdose happens more frequently since it has a very narrow therapeutic range in blood, necessitating investigation of its adverse effects on blood cells. The possible changes that lithium exposure may have on functional and morphological characteristics of human red blood cells (RBCs) have been studied ex vivo using single-cell Raman spectroscopy, optical trapping, and membrane fluorescent probe. The Raman spectroscopy was performed with excitation at 532 nm light, which also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction of lithium-exposed RBCs was observed to decline with lithium concentration, indicating irreversible oxygenation of intracellular Hb from lithium exposure. The lithium exposure may also have an effect on RBC membrane, which was investigated via optical stretching in a laser trap and the results suggest lower membrane fluidity for the lithium-exposed RBCs. The membrane fluidity of RBCs was further studied using the Prodan generalized polarization method and the results verify the reduction of membrane fluidity upon lithium exposure.


Assuntos
Eritrócitos , Lítio , Humanos , Lítio/farmacologia , Lítio/análise , Eritrócitos/química , Hemoglobinas , Lasers , Análise Espectral Raman
7.
Bioconjug Chem ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897105

RESUMO

Chronic wounds are a major healthcare challenge around the world. The presence of bacterial biofilms, accumulation of reactive oxygen species (ROS), and persistent inflammation have been identified as rate-limiting steps in chronic wound healing. Anti-inflammatory drugs, like naproxen (Npx) and indomethacin (Ind), show poor selectivity for the COX-2 enzyme, which plays a key role in producing inflammatory responses. To address these challenges, we have developed conjugates of Npx and Ind with peptides possessing antibacterial, antibiofilm, and antioxidant properties along with enhanced selectivity for the COX-2 enzyme. We have synthesized and characterized peptide conjugates Npx-YYk, Npx-YYr, Ind-YYk, and Ind-YYr, which were self-assembled into supramolecular gels. As envisaged, the conjugates and gels showed high proteolytic stability and selectivity toward the COX-2 enzyme and potent antibacterial activities (>95% within 12 h) against Gram-positive bacteria Staphylococcus aureus, implicated in wound-related infections, eradication of biofilm (∼80%), and radical scavenging (>90%) properties. Cell culture studies with mouse fibroblast cells (L929) and macrophage-like cells (RAW 264.7) showed that gels were cell proliferative in nature (120% viability), which resulted in faster and more efficient scratch healing. Treatment with gels led to a significant decrease in proinflammatory cytokine (TNF-α and IL-6) expressions and an increase in anti-inflammatory gene (IL-10) expression. The gels developed in this work show great promise as a topical agent for chronic wounds or as a coating for medical devices to prevent medical-device-associated infections.

8.
Biomater Adv ; 138: 212939, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913235

RESUMO

Altered wound healing is a major challenge faced by both developed and developing nations. Biofilm formation has been identified as one of the causative factors for the progression of chronic wounds. The spread of biofilm is controlled by inhibiting the biofilm formation or disrupting the mature biofilm. Functional nanomaterials/enzymes with antimicrobial effects, such as metal oxides, rare earth metals, and carbon nanoparticles have been investigated to treat biofilm and overcome the drawbacks associated with the antibiotic therapy. Cerium oxide nanoparticles (CNPs) have drawn significant attention as a promising antimicrobial agent owing to their antibacterial, enzyme-mimetic, and crystalline properties but they suffer from poor colloidal stability and dispersity in an aqueous environment and size-dependent function. In this work, we have developed a functionalized silica ceria nanocomposite (FSC), as an antibiotic-free system, to treat biofilms. The FSC possesses a high surface area of mesoporous silica nanoparticles (MSNs) combined with the intrinsic antibacterial activity of cerium oxide for biofilm inhibition. The nanocomposite was fabricated using silica and ceria precursors, and it exhibited a high surface area of 436 m2/g and an average particle size of around 450 nm. The physical and chemical properties of nanocomposite were characterized using FTIR, XRD, UV-Vis, BET, EDX, and XPS analysis. It exhibited a potent antioxidant activity (86%), positive haloperoxidase mimetic property, and broad-spectrum antibacterial activities. It showed 99.9% inhibition against S. aureus (Gram-positive) and 81% inhibition against E. coli (Gram-negative) within 12 and 24 h along with the significant inhibition of biofilm formation (80%) as well as the disruptive effect against the established biofilm (77%) of S. aureus. Cell viability assays indicated the proliferative nature of composite in normal basal conditions and increased cell viability (97%) in the presence of oxidative stress. Despite being a cationic nanomaterial, it showed a good hemocompatibility against human blood and caused complete wound closure in mouse fibroblast cell line within 24 h. The functionalized silica ceria nanocomposite developed has a strong potential in chronic wound healing applications.


Assuntos
Nanocompostos , Dióxido de Silício , Animais , Antibacterianos/farmacologia , Biofilmes , Escherichia coli , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Nanocompostos/uso terapêutico , Dióxido de Silício/química , Staphylococcus aureus
9.
Biomater Sci ; 10(9): 2248-2262, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35356961

RESUMO

Diabetes is a global epidemic that poses a severe challenge to public health. The characteristic features of this disease are hyperglycemia and deterioration of the function of pancreatic ß-cells, which leads to oxidative stress and organ damage. Glimepiride is used to treat type II diabetes but is associated with side effects, like lower half-life, faster elimination, and hypoglycemia. Self-assembled peptide gels have drawn attention as a drug delivery depot because of their biocompatibility, diverse design, tunable functionality, and dynamic self-assembly properties. In order to overcome the challenge of oxidative stress and side effects associated with the use of glimepiride, we have developed glimepiride-loaded, self-assembled peptide gels from di- and tripeptides employing amino acids with inherent antioxidant properties. Dipeptides, Fmoc-Tyr-Tyr-NH2 (YY) and Fmoc-Trp-Trp-NH2 (WW), and a tripeptide, Fmoc-Trp-Trp-His-NH2 (WWH), were developed and self-assembled into gels. The gels exhibited excellent viscoelastic properties and self-healing abilities, and the presence of ß-sheet secondary structures. The dipeptide gels provided a sustained drug release but more drug was released at physiological pH (7.4) than acidic pH (5 and 6), whereas the tripeptide gel released more drug at acidic pH. The gels showed free radical scavenging activities of more than 90% and were able to decrease the amount of oxidative stress caused by the ROS in HepG2 cells. They were non-toxic to the cell line tested and HepG2 cells treated with the releasate of tripeptide gels showed enhanced glucose uptake. This work for the first time reports the development of glimepiride-loaded self-assembled peptide gels, which can serve as a dynamic, multidimensional biomaterial to reduce oxidative stress, hypoglycemia, and repetitive dosing of drugs in diabetic patients by controlling glimepiride release.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Preparações de Ação Retardada , Géis , Humanos , Concentração de Íons de Hidrogênio , Hipoglicemiantes , Peptídeos/química , Compostos de Sulfonilureia
10.
Mater Sci Eng C Mater Biol Appl ; 130: 112463, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702538

RESUMO

Chronic inflammation, infection, and fixation stability disrupts bone tissue regeneration by implants. The elevated levels of inflammatory markers and reactive oxygen species (ROS) damage tissues, inhibit osteoblastic differentiation, and promote bone resorption. Activation of local and chronic inflammatory responses due to the implantable biomaterial poses a high risk of implant failure and compromised bone repair in several pathological conditions. Not much progress has been made in the development of biomaterials that can counter inflammation and ROS along with inducing osteogenic activities for managing bone defects/injuries. We have developed, for the first time, injectable polymeric hydrogels by crosslinking oxidized pullulan (OP, 1% w/v) and 8-arm PEG hydrazine (PEG-HY, 10% w/v) using pH-sensitive and dynamic hydrazone linkages at 37 °C in buffer. The hydrogels were loaded with dexamethasone (Dex), an anti-inflammatory corticosteroid and osteogenic inducer, by covalently linking it to PEG-HY by hydrazone linkages, and their morphological, injectability, viscoelastic, self-healing, swelling, and drug-release properties were investigated. The hydrogels provided a pH-sensitive sustained release of PEG-Dex conjugate (3.62 wt%, 9.22 × 10-5 mol of Dex/gram) for 28 days, with 74.54 and 55.15% PEG-Dex conjugate being released at pH 6.5 and 7.4. ABTS assay showed that hydrogels inhibited 68% radicals within 1 h, and treatment with hydrogel releasates inhibited the pro-inflammatory markers, IL-6 and IL-1ß, and elevated the anti-inflammatory marker, TGF-ß, in murine osteoblast precursor cells (MC3T3-E1). The hydrogels were found suitable for cell encapsulation and they exhibited 110% viability on treatment with releasates. Finally, the osteogenic activities of hydrogels were ascertained by alkaline phosphatase (ALP) activities, alizarin red S staining, and osteogenic gene expressions- RUNX2, Col-I, OPN, and IBSP. Overall, PEG-Dex conjugate released from hydrogels improved the cell viability and proliferation, and induced the osteoblastic differentiation. The hydrogels with their promising antioxidant and anti-inflammatory properties along with the osteogenic activities show a strong potential as an injectable, extracellular matrix (ECM)-mimicking implantable drug-depot for bone repair applications in chronic inflammatory conditions.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Animais , Dexametasona/farmacologia , Glucanos , Hidrogéis/farmacologia , Camundongos , Osteogênese , Polietilenoglicóis
12.
J Neurosci Rural Pract ; 12(3): 495-503, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295103

RESUMO

Objectives The spinal dermoid and epidermoid cysts (SDECs) are rare entities comprising less than 1% of pediatric intraspinal tumors. The present study aims to extrapolate the clinicoradiological data, in order to identify the most plausible neural tube closure model in human and provide a retrospective representation from our clinical experience. Materials and Methods We collected the details of all histologically proven, newly diagnosed primary SDECs who underwent excision over the past 20 years. Secondary or recurrent lesions and other spinal cord tumors were excluded. Surgical and follow-up details of these patients as well as those with associated spinal dysraphism were reviewed. Clinical and radiological follow-up revealed the recurrence in these inborn spinal cord disorders. Results A total of 73 patients were included retrospectively, having a mean age of 22.4 ± 13.3 years, and 41 (56.2%) cases fell in the first two decades of life. Twenty-four (32.9%) dermoid and 49 (67.1%) epidermoid cysts comprised the study population and 20 of them had associated spinal dysraphism. The distribution of SDECs was the most common in lumbosacral region ( n = 30) which was 10 times more common than in the sacral region ( n = 3). Bladder dysfunction 50 (68.5%) and pain 48 (65.7%) were the most common presenting complaints. During follow-up visits, 40/48 (83.3%) cases showed sensory improvement while 11/16 (68.7%) regained normal bowel function. There was no surgical mortality with recurrence seen in eight till the last follow-up. Conclusions The protracted clinical course of the spinal inclusion cysts mandates a long-term follow-up. The results of our study support the multisite closure model and attempt to provide a retrospective reflection of neural tube closure model in humans by using SDECs as the surrogate marker of neural tube closure defect.

13.
Eur Biophys J ; 50(6): 867-876, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34110463

RESUMO

Management of postprandial hyperglycemia is important for preventing severe complications like cardiovascular disease in diabetes patients. The associated glycemic instability in postprandial hyperglycemia may also cause disorders in circulating red blood cells (RBCs). Therefore, effects of short-term hyperglycemic stress on RBCs such as occur in the postprandial condition, have been studied here ex vivo using single-cell Raman spectroscopy and optical trapping. RBCs incubated in high glucose containing media relevant to postprandial hyperglycemia were studied for changes with respect to controls by analyzing the single-cell Raman spectra acquired with Raman optical tweezers with 532 nm excitation light. Use of 532 nm light for exciting Raman spectra also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction was noticed to be limited in hyperglycemia-exposed cells in comparison to the control. Since this suggests formation of permanently oxidized Hb in hyperglycemia-exposed RBCs, a fluorescence study was performed which showed elevated levels of oxidative stress in these cells. The changes in the RBC membrane, which may result due to higher levels of oxidative stress, were investigated using optical stretching experiments under the laser trap. The results indicated a loss of elasticity for the RBC membrane due to hyperglycemic exposure.


Assuntos
Hiperglicemia , Pinças Ópticas , Eritrócitos/química , Hemoglobinas , Humanos , Análise Espectral Raman
14.
J Biophotonics ; 14(8): e202100047, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33871929

RESUMO

Raman spectroscopy was performed on GSM 900 and 1800 MHz mobile phone signal exposed red blood cells (RBCs). The observed changes in the Raman spectra of mobile signal exposed RBCs compared to unexposed control suggest reduced hemoglobin-oxygen affinity for the exposed cells. The possible mechanism may involve activation of the voltage gated membrane Ca2+ channels by the mobile phone emissions resulting in an increase in the levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) in cells via altered metabolic activities. Further studies carried out with fluorescent Ca2+ indicator confirmed increased intracellular Ca2+ level in the exposed cells. Since intracellular ATP level influences the shape and mechanics of RBCs, exposed cells were studied using diffraction phase microscopy and optical tweezers. Detectable changes in shape and mechanical properties were observed due to mobile signal exposure.


Assuntos
Telefone Celular , Eritrócitos , Contagem de Eritrócitos , Hemoglobinas , Humanos , Pinças Ópticas
15.
Mater Sci Eng C Mater Biol Appl ; 120: 111669, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545834

RESUMO

Hydroxyapatite (HA) is the main inorganic component of bone and dentin, and their non-stoichiometric compositions and plate-shaped morphology is responsible for their bioactivity and osteoconductive nature. Collagenous (CPs) and non-collagenous proteins (NCPs) facilitate mineralization and regulate structural properties of HA through their side-chains. The bioactivity of synthetic HA does not usually match with the HA found in bone and, therefore, there is a need to understand the role of biomolecules in bone mineralization in order to develop non-stoichiometric plate-shaped HA for bone grafts. Role of several amino acids has been investigated but the role of L-his has been rarely investigated under physiological conditions even though it is a part of HA inhibitor proteins, like albumin, amelogenin, and histidine-rich proteins. In this study, L-his and L-glu were used to modify the structural properties of HA in different experimental conditions and buffer systems (tris and hepes). The results showed that L-his was able to regulate the plate-shaped morphology of HA in every experimental condition, unlike the L-glu, where the crystal morphology was regulated by experimental conditions. Both amino acids behaved differently in DI water, tris, and hepes buffer, and the media used influenced the precipitation time and structural properties of HA. Hepes and tris buffers also influenced the HA precipitation process. Overall, the studies revealed that L-his may be used as an effective regulator of plate-shaped morphology of HA, instead of large NCPs/proteins, for designing biomaterials for bone regeneration applications and the choice of buffer system is important in designing and evaluating the systems for mineralization. In cell culture studies, mouse osteoblast precursor cells (MC3T3-E1) showed highest proliferation on the bone-like plate-shaped HA, among all the HA samples investigated.


Assuntos
Durapatita , Histidina , Animais , Regeneração Óssea , Osso e Ossos , Calcificação Fisiológica , Camundongos , Osteoblastos
16.
ACS Biomater Sci Eng ; 6(10): 5507-5518, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320569

RESUMO

The emergence of antibiotic resistance and the increasing rate of bacterial infections have motivated scientists to explore novel antibacterial materials and strategies to circumvent this challenge. Gels fabricated from ultrashort self-assembled peptides have turned out to be the most promising bactericidal materials. Self-assembled Fmoc-Phe-Phe gels have been extensively investigated earlier, and it has been shown that these gels possess potent bactericidal properties but suffer from disadvantages, such as poor proteolytic stabilities. In the present work, we report the highly potent bactericidal activities and proteolytic stability of gels fabricated from Fmoc-l-Arg-d-Phe-d-Phe-CONH2 (RFF) peptide, which are best in class. We fabricated and characterized self-assembled gels (1-2% w/v) from Fmoc-d-Phe-d-Phe-CONH2 (FF), Fmoc-l-His-d-Phe-d-Phe-CONH2 (HFF), and Fmoc-l-Arg-d-Phe-d-Phe-CONH2 (RFF) in aq dimethyl sulfoxide (35% v/v). The gels were characterized for their surface morphology, viscoelastic, self-healing, and stability characteristics. On incubation with proteolytic enzymes, FF gels did not show statistically significant degradation, and HFF and RFF gels showed only 43 and 32% degradation within 72 h at 37 °C, which is much better than gels reported earlier. The RFF gels (2%) exhibited more than 90% inhibition against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) within 6 h, and the activities were sustained for up to 72 h. The high-resolution transmission electron microscopy studies indicated electrostatic interactions between the gel and bacterial membrane components, leading to cell lysis and death, which was further confirmed by the bacterial cell Live/Dead assay. MTT assay showed that the gels were not toxic to mammalian cells (L929). The bactericidal characteristics of RFF gels have not been reported so far. The RFF gels show strong potential for treating device-related infections caused by antimicrobial-resistant bacteria.


Assuntos
Dipeptídeos , Peptídeos , Animais , Fluorenos , Géis
17.
Mater Sci Eng C Mater Biol Appl ; 110: 110648, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204079

RESUMO

Self-assembled peptide gels have generated interest as antibacterial materials to prevent biomaterial-related infections but these peptides are often associated with poor proteolytic stability. Efforts have been made to stabilize peptides by incorporating non-natural amino acids and/or linkages but complexation with polymers have not been explored. Therefore, we developed self-assembled peptide/chitosan gels, Boc-D-Phe-γ4-L-Phe-PEA (NH007)/chitosan and Boc-L-Phe-γ4-L-Phe-PEA (NH009)/chitosan, by complexing dipeptide NH007 or NH009 with chitosan in DMSO:acetic acid. The gels were characterized using SEM, FTIR, contact angle, and rheology data and found to exhibit excellent viscoelastic and self-healing characteristics. Complexation with chitosan led to an increase in stability against proteolytic degradation. Peptide/chitosan gels showed broad spectrum antibacterial activities against Gram-negative and Gram-positive bacteria, such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis at a high inoculum of 107-108 cfu/mL. NH007/chitosan gels showed 70-75% inhibition, whereas NH009/chitosan showed 78-81% inhibition and NH009/chitosan gels, in particular, showed strong antibacterial activity against pathogenic strain of P. aeruginosa. A unique feature of these gels is that the antibacterial activities did not decrease gradually but were sustained for up to 48 h. The mechanistic studies using SEM and HR-TEM indicated interaction of gels with bacterial membrane components, leading to cell lysis. The MTT and LDH assays indicated >90% cell viability and only 8-10% toxicity towards NIH 3T3 fibroblast cells. Thus, peptide/chitosan gels developed in the present work showed improved proteolytic stability and sustained antibacterial activities and, therefore, may be used for preventing biomaterial-related infections.


Assuntos
Antibacterianos/uso terapêutico , Materiais Biocompatíveis/efeitos adversos , Quitosana/uso terapêutico , Oligopeptídeos/uso terapêutico , Infecções Relacionadas à Prótese/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Elasticidade , Géis , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Oligopeptídeos/química , Infecções Relacionadas à Prótese/patologia , Reologia , Viscosidade
18.
ACS Biomater Sci Eng ; 6(5): 2778-2786, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463264

RESUMO

Controlling bacterial growth using artificial nanostructures inspired from natural species is of immense importance in biomedical applications. In the present work, a low cost, fast processing, and scalable anisotropic wet etching technique is developed to fabricate the densely packed disordered silicon nanopyramids (SiNPs) with nanosized sharp tips. The bactericidal characteristics of SiNPs are assessed against strains implicated in nosocomial and biomaterial-related infections. Compared to the bare silicon with no antibacterial activities, SiNPs of 1.85 ± 0.28 µm height show 55 and 75% inhibition of Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) bacteria, whereas the silicon nanowires (SiNWs) fabricated using a metal-assisted chemical etching method show 50 and 58% inhibition of E. coli and B. subtilis. The mechanistic studies using a scanning electron microscope and live/dead bacterial cell assay reveal cell rupture and predominance of dead cells on contact with SiNPs and SiNWs, which confirms their bactericidal effects. Chemical stability and cell viability studies demonstrate the biocompatible nature of SiNP and SiNW surfaces. Owing to their capability to kill both Gram-negative and positive bacteria and minimal toxicity to murine fibroblast cells, SiNPs can be used as an antibacterial coating on medical devices to prevent nosocomial and biomaterial-related infections.


Assuntos
Nanofios , Silício , Animais , Antibacterianos/farmacologia , Escherichia coli , Bactérias Gram-Positivas , Camundongos
19.
Biomacromolecules ; 20(6): 2174-2184, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31021601

RESUMO

Precise local delivery of chemotherapeutic agents employing an injectable depot could be a promising approach to achieve spatiotemporal control over the drug release along with minimizing the challenges associated with the systemic delivery of chemotherapeutic agents. In this regard, we report the development and evaluation of a poly(ethylene glycol) (PEG) hydrogel-based drug delivery platform for the covalent entrapment and sustained release of chemotherapeutic agents. The hydrogels were fabricated by cross-linking of 8-arm PEG glyoxylic aldehyde and 8-arm PEG hydrazine using glyoxylic hydrazone linkages, without employing small-molecule cross-linkers. The hydrogels displayed pH-responsive gelation and swelling pattern along with mechanical robustness, with storage modulus of up to 1650 Pa. Owing to the reversible nature of glyoxylic hydrazone linkages, hydrogels exhibited excellent thixotropic and self-healing characteristics. Doxorubicin (DOX) was covalently entrapped into the hydrogel matrix by attaching it to 8-arm PEG hydrazine in substoichiometric ratios, prior to fabrication of hydrogels. A controlled release of up to 81.33% DOX was obtained from 5% hydrogels after 40 days at tumoral pH (6.4 ± 0.05) and only 42.87% DOX at physiological pH (7.4 ± 0.05). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and three-dimensional cell encapsulation studies using NIH-3T3 cell lines demonstrated the biocompatible nature of polymers as well as the hydrogel matrix. The multicellular tumor spheroid growth suppression studies demonstrated a 40.50% reduction in tumor area for the PEG-DOX conjugate, while a 29.27% reduction for hydrogel release media and 51.9% for the DOX. Both PEG-DOX and the release media were internalized into A549 cells, causing cell death. The present strategy can be employed for long-term sustained delivery of chemotherapeutic agents to locally accessible tumors or sites adjacent to tumor.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Hidrazonas/química , Hidrogéis/química , Neoplasias/tratamento farmacológico , Polietilenoglicóis , Células A549 , Animais , Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/uso terapêutico , Humanos , Camundongos , Células NIH 3T3
20.
Mater Sci Eng C Mater Biol Appl ; 96: 86-95, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30606601

RESUMO

Upconversion nanoparticles (UCNP) with unique multi-photon excitation photo-luminescence properties have been extensively explored as novel contrast agents for low-background biomedical imaging. There is an increasing interest in employing UCNPs as carrier for drug delivery as these offers a unique opportunity to combine therapy and diagnostics in one platform (theranostics). In the present work, we report microwave-assisted synthesis of hexagonal NaYF4:Yb/Er UCNPs coated with porous silica and functionalized with amine (UCNP@mSiO2). The UCNP@mSiO2 were investigated for controlled delivery of a chemotherapeutic agent, doxorubicin (DOX, hydrophilic), and a chemosensitizing agent, curcumin (CCM, hydrophobic). The drug loading was relatively higher for DOX (17.4%), in comparison to CCM (8.1%). The cumulative drug release from DOX-loaded UCNP@mSiO2 were 30 and 41% at physiological (7.4) and tumoral (6.4) pH, following a pseudo Fickian release pattern, whereas the release from CCM-loaded UCNP@mSiO2 were 27 and 50% at pH 7.4 and 6.4, following a non-Fickian and pseudo-Fickian release patterns, respectively. Both DOX and CCM-loaded UCNP@mSiO2 exhibited pH-dependent controlled drug delivery but the effect was more pronounced for CCM, the hydrophobic chemosensitizer. Cell viability assay using HeLa cells showed that DOX-loaded UCNP@mSiO2 inhibit cell growth in a dose-dependent manner, similar to free DOX, but the cell inhibition activity of free CCM was lower than CCM passively entrapped in UCNP@mSiO2. Confocal microscopy studies revealed cell uptake of both the drug by HeLa cells. Thus, UCNP@mSiO2 exhibited the unique capability to deliver hydrophilic and hydrophobic drugs, individually. UCNP@mSiO2 carrier, equipped with theranostic capabilities, may potentially be used for pH-responsive release of chemotherapeutic agents in cancer environment.


Assuntos
Materiais Revestidos Biocompatíveis , Curcumina , Doxorrubicina , Portadores de Fármacos , Európio , Fluoretos , Nanoestruturas , Neoplasias/tratamento farmacológico , Dióxido de Silício , Itérbio , Ítrio , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Curcumina/química , Curcumina/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Európio/química , Európio/farmacologia , Fluoretos/química , Fluoretos/farmacologia , Células HeLa , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Porosidade , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Itérbio/química , Itérbio/farmacologia , Ítrio/química , Ítrio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...