Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 110: 102591, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126962

RESUMO

PURPOSE: An accurate and well-defined survival prediction of High Grade Gliomas (HGGs) is indispensable because of its high incidence and aggressiveness. Therefore, this paper presents a unified framework for fully automatic overall survival classification and its interpretation. METHODS AND MATERIALS: Initially, a glioma detection model is utilized to detect the tumorous images. A pre-processing module is designed for extracting 2D slices and creating a survival data array for the classification network. Then, the classification pipeline is integrated with two separate pathways: a modality-specific and a modality-concatenated pathway. The modality-specific pathway runs three separate CNNs for extracting rich predictive features from three sub-regions of HGGs (peritumoral edema, enhancing tumor and necrosis) by using three neuro-imaging modalities. In these pathways, the image vectors of the different modalities are also concatenated to the final fusion layer to overcome the loss of lower-level tumor features. Furthermore, to exploit the intra-modality correlations, a modality-concatenated pathway is also added to the classification pipeline. The experiments are conducted on BraTS 2018 and BraTS 2019 benchmarks, demonstrating that the proposed approach performs competitively in classifying HGG patients into three survival groups, namely, short, mid, and long survivors. RESULTS: The proposed approach achieves an overall classification accuracy, sensitivity, and specificity of about 0.998, 0.997, and 0.999, respectively, for the BraTS 2018 dataset, and for BraTS 2019, these values correspond to 1.000, 0.999, and 0.999. CONCLUSIONS: The results indicate that the proposed model achieves the highest values of the evaluation metrics for the overall survival classification of HGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...