Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 33(11): 108511, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326786

RESUMO

Early-life adversity (ELA) is associated with lifelong memory deficits, yet the responsible mechanisms remain unclear. We impose ELA by rearing rat pups in simulated poverty, assess hippocampal memory, and probe changes in gene expression, their transcriptional regulation, and the consequent changes in hippocampal neuronal structure. ELA rats have poor hippocampal memory and stunted hippocampal pyramidal neurons associated with ~140 differentially expressed genes. Upstream regulators of the altered genes include glucocorticoid receptor and, unexpectedly, the transcription factor neuron-restrictive silencer factor (NRSF/REST). NRSF contributes critically to the memory deficits because blocking its function transiently following ELA rescues spatial memory and restores the dendritic arborization of hippocampal pyramidal neurons in ELA rats. Blocking NRSF function in vitro augments dendritic complexity of developing hippocampal neurons, suggesting that NRSF represses genes involved in neuronal maturation. These findings establish important, surprising contributions of NRSF to ELA-induced transcriptional programming that disrupts hippocampal maturation and memory function.


Assuntos
Hipocampo/imunologia , Transtornos da Memória/imunologia , Neurônios/metabolismo , Fatores de Transcrição/imunologia , Animais , Modelos Animais de Doenças , Humanos , Ratos
2.
Epigenetics ; 13(3): 318-330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29613827

RESUMO

Augmented maternal care during the first postnatal week promotes life-long stress resilience and improved memory compared with the outcome of routine rearing conditions. Recent evidence suggests that this programming commences with altered synaptic connectivity of stress sensitive hypothalamic neurons. However, the epigenomic basis of the long-lived consequences is not well understood. Here, we employed whole-genome bisulfite sequencing (WGBS), RNA-sequencing (RNA-seq), and a multiplex microRNA (miRNA) assay to examine the effects of augmented maternal care on DNA cytosine methylation, gene expression, and miRNA expression. A total of 9,439 differentially methylated regions (DMRs) associated with augmented maternal care were identified in male offspring hypothalamus, as well as a modest but significant decrease in global DNA methylation. Differentially methylated and expressed genes were enriched for functions in neurotransmission, neurodevelopment, protein synthesis, and oxidative phosphorylation, as well as known stress response genes. Twenty prioritized genes were identified as highly relevant to the stress resiliency phenotype. This combined unbiased approach enabled the discovery of novel genes and gene pathways that advance our understanding of the epigenomic mechanisms underlying the effects of maternal care on the developing brain.


Assuntos
Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Epigenômica , Hipotálamo/crescimento & desenvolvimento , Animais , Ilhas de CpG/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Hipotálamo/metabolismo , Masculino , MicroRNAs/genética , Relações Mãe-Filho , Plasticidade Neuronal/genética , Ratos , Análise de Sequência de DNA , Análise de Sequência de RNA , Estresse Psicológico/genética , Sequenciamento Completo do Genoma
3.
J Neurosci ; 37(14): 3799-3812, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28275159

RESUMO

In a subset of children experiencing prolonged febrile seizures (FSs), the most common type of childhood seizures, cognitive outcomes are compromised. However, the underlying mechanisms are unknown. Here we identified significant, enduring spatial memory problems in male rats following experimental prolonged FS (febrile status epilepticus; eFSE). Remarkably, these deficits were abolished by transient, post hoc interference with the chromatin binding of the transcriptional repressor neuron restrictive silencing factor (NRSF or REST). This transcriptional regulator is known to contribute to neuronal differentiation during development and to programmed gene expression in mature neurons. The mechanisms of the eFSE-provoked memory problems involved complex disruption of memory-related hippocampal oscillations recorded from CA1, likely resulting in part from impairments of dendritic filtering of cortical inputs as well as abnormal synaptic function. Accordingly, eFSE provoked region-specific dendritic loss in the hippocampus, and aberrant generation of excitatory synapses in dentate gyrus granule cells. Blocking NRSF transiently after eFSE prevented granule cell dysmaturation, restored a functional balance of γ-band network oscillations, and allowed treated eFSE rats to encode and retrieve spatial memories. Together, these studies provide novel insights into developing networks that underlie memory, the mechanisms by which early-life seizures influence them, and the means to abrogate the ensuing cognitive problems.SIGNIFICANCE STATEMENT Whereas seizures have been the central focus of epilepsy research, they are commonly accompanied by cognitive problems, including memory impairments that contribute to poor quality of life. These deficits often arise before the onset of spontaneous seizures, or independent from them, yet the mechanisms involved are unclear. Here, using a rodent model of common developmental seizures that provoke epilepsy in a subset of individuals, we identify serious consequent memory problems. We uncover molecular, cellular, and circuit-level mechanisms that underlie these deficits and successfully abolish them by targeted therapeutic interventions. These findings may be important for understanding and preventing cognitive problems in individuals suffering long febrile seizures.


Assuntos
Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Convulsões Febris/metabolismo , Convulsões Febris/fisiopatologia , Animais , Animais Recém-Nascidos , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/etiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Convulsões Febris/complicações
4.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197553

RESUMO

The mechanisms by which brain insults lead to subsequent epilepsy remain unclear. Insults, including trauma, stroke, tumors, infections, and long seizures [status epilepticus (SE)], create a neuronal state of increased metabolic demand or decreased energy supply. Neurons express molecules that monitor their metabolic state, including sirtuins (Sirts). Sirtuins deacetylate cytoplasmic proteins and nuclear histones, and their epigenetic modulation of the chromatin governs the expression of many genes, influencing neuronal properties. Thus, sirtuins are poised to enduringly modulate neuronal properties following SE, potentially contributing to epileptogenesis, a hypothesis supported by the epilepsy-attenuating effects of blocking a downstream target of Sirt1, Neuron-Restrictive Silencer Factor (NRSF) also know as REST (RE1-Silencing Transcription factor). Here we used an adult male rat model of epileptogenesis provoked by kainic acid-induced SE (KA-SE). We assessed KA-SE-provoked Sirt1 activity, infused a Sirt1 inhibitor (EX-527) after KA-SE, and examined for epileptogenesis using continuous digital video-EEG. Sirt1 activity, measured using chromatin immunoprecipitation for Sirt1 binding at a target gene, increased rapidly after SE. Post hoc infusion of the Sirt1 inhibitor prevented Sirt1-mediated repression of a target gene. Blocking Sirt1 activity transiently after KA-SE did not significantly influence the time- course and all of the parameters of epilepsy development. Specifically, latency to first seizure and seizure number, duration, and severity (using the Racine scale and EEG measures) as well as the frequency and duration of interictal spike series, were all unchanged. KA-SE provoked a robust inflammatory response and modest cell loss, yet neither was altered by blocking Sirt1. In conclusion, blocking Sirt1 activity after KA-SE does not abrogate epilepsy development, suggesting that the mechanisms of such acquired epileptogenesis are independent of Sirt1 function.


Assuntos
Convulsões/metabolismo , Sirtuína 1/metabolismo , Estado Epiléptico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Carbazóis/farmacologia , Contagem de Células , Fármacos do Sistema Nervoso Central/farmacologia , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Eletroencefalografia , Imuno-Histoquímica , Inflamação/metabolismo , Ácido Caínico , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Convulsões/patologia , Índice de Gravidade de Doença , Sirtuína 1/antagonistas & inibidores , Estado Epiléptico/patologia , Gravação em Vídeo
5.
Neurobiol Stress ; 2: 10-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884016

RESUMO

Epilepsy is more prevalent in populations with high measures of stress, but the neurobiological mechanisms are unclear. Stress is a common precipitant of seizures in individuals with epilepsy, and may provoke seizures by several mechanisms including changes in neurotransmitter and hormone levels within the brain. Importantly, stress during sensitive periods early in life contributes to 'brain programming', influencing neuronal function and brain networks. However, it is unclear if early-life stress influences limbic excitability and promotes epilepsy. Here we used an established, naturalistic model of chronic early-life stress (CES), and employed chronic cortical and limbic video-EEGs combined with molecular and cellular techniques to probe the contributions of stress to age-specific epilepsies and network hyperexcitability and identify the underlying mechanisms. In control male rats, EEGs obtained throughout development were normal and no seizures were observed. EEGs demonstrated epileptic spikes and spike series in the majority of rats experiencing CES, and 57% of CES rats developed seizures: Behavioral events resembling the human age-specific epilepsy infantile spasms occurred in 11/23 (48%), accompanied by EEG spikes and/or electrodecrements, and two additional rats (9%) developed limbic seizures that involved the amygdala. Probing for stress-dependent, endogenous convulsant molecules within amygdala, we examined the expression of the pro-convulsant neuropeptide corticotropin-releasing hormone (CRH), and found a significant increase of amygdalar--but not cortical--CRH expression in adolescent CES rats. In conclusion, CES of limited duration has long-lasting effects on brain excitability and may promote age-specific seizures and epilepsy. Whereas the mechanisms involved require further study, these findings provide important insights into environmental contributions to early-life seizures.

6.
Neurobiol Stress ; 1: 109-115, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25530985

RESUMO

Genes and environment interact to influence cognitive and emotional functions throughout life. Early-life experiences in particular contribute to vulnerability or resilience to a number of emotional and cognitive illnesses in humans. In rodents, early-life experiences directly lead to resilience or vulnerability to stress later in life, and influence the development of cognitive and emotional deficits. The mechanisms for the enduring effects of early-life experiences on cognitive and emotional outcomes are not completely understood. Here, we present emerging information supporting experience-dependent modulation of the number and efficacy of synaptic inputs onto stress-sensitive neurons. This synaptic 'rewiring', in turn, may influence the expression of crucial neuronal genes. The persistent changes in gene expression in resilient versus vulnerable rodent models are likely maintained via epigenetic mechanisms. Thus, early-life experience may generate resilience by altering synaptic input to neurons, which informs them to modulate their epigenetic machinery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...