Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 106(7): 1929-1955, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33755733

RESUMO

CONTEXT: The ability of ovarian steroids to modify ovarian cancer (OC) risk remains controversial. Progesterone is considered to be protective; recent studies indicate no effect or enhanced OC risk. Knowledge of progesterone receptor (PR) signaling during altered physiology that typifies OC development is limited. OBJECTIVE: This study defines PR-driven oncogenic signaling mechanisms in p53-mutant human fallopian tube epithelia (hFTE), a precursor of the most aggressive OC subtype. METHODS: PR expression in clinical samples of serous tubal intraepithelial carcinoma (STIC) lesions and high-grade serous OC (HGSC) tumors was analyzed. Novel PR-A and PR-B isoform-expressing hFTE models were characterized for gene expression and cell cycle progression, emboli formation, and invasion. PR regulation of the DREAM quiescence complex and DYRK1 kinases was established. RESULTS: STICs and HGSC express abundant activated phospho-PR. Progestin promoted reversible hFTE cell cycle arrest, spheroid formation, and invasion. RNAseq/biochemical studies revealed potent ligand-independent/-dependent PR actions, progestin-induced regulation of the DREAM quiescence complex, and cell cycle target genes through enhanced complex formation and chromatin recruitment. Disruption of DREAM/DYRK1s by pharmacological inhibition, HPV E6/E7 expression, or DYRK1A/B depletion blocked progestin-induced cell arrest and attenuated PR-driven gene expression and associated OC phenotypes. CONCLUSION: Activated PRs support quiescence and pro-survival/pro-dissemination cell behaviors that may contribute to early HGSC progression. Our data support an alternative perspective on the tenet that progesterone always confers protection against OC. STICs can reside undetected for decades prior to invasive disease; our studies reveal clinical opportunities to prevent the ultimate development of HGSC by targeting PRs, DREAM, and/or DYRKs.


Assuntos
Processos de Crescimento Celular/genética , Cistadenocarcinoma Seroso/genética , Neoplasias das Tubas Uterinas/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Receptores de Progesterona/metabolismo , Proteínas Repressoras/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Tubas Uterinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Ovarianas/genética , Fenótipo , Proteína Supressora de Tumor p53/metabolismo
2.
Clin Cancer Res ; 26(1): 25-34, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570566

RESUMO

PURPOSE: Selective progesterone receptor modulators (SPRMs) show preclinical activity against hormone-sensitive breast cancer, but have not been tested in patients with early, treatment-naïve tumors. PATIENTS AND METHODS: In a double-blind presurgical window trial of oral telapristone acetate (TPA) 12 mg daily versus placebo, 70 patients with early-stage breast cancer were randomized 1:1 (stratified by menopause) and treated for 2 to 10 weeks. The primary endpoint was change in Ki67 between diagnostic biopsy and surgical specimens. Gene expression pre- and posttherapy was assessed using RNA-sequencing and gene set enrichment analysis was performed to determine pathways enriched in response to TPA and placebo treatments. RESULTS: Among 61 evaluable women (29 placebo and 32 telapristone acetate), 91% of tumors were ER/PR positive. The mean Ki67 declined by 5.5% in all women treated with telapristone acetate (P = 0.003), and by 4.2% in all women treated with placebo (P = 0.04). After menopausal stratification, the Ki67 decline remained significant in 22 telapristone acetate-treated premenopausal women (P = 0.03). Differential gene expression analysis showed no significant modulation overall. However, in a subset of tumors that demonstrated ≥30% relative reduction in Ki67 in the telapristone acetate group, genes related to cell-cycle progression, and those in the HER2 amplicon were significantly downregulated. In contrast, no significantly enriched pathways were identified in the placebo group. CONCLUSIONS: Patients treated with telapristone acetate whose Ki67 decreased by ≥30% demonstrated a selective antiproliferative signal, with a potentially important effect on HER2 amplicon genes. Evaluation of SPRMs in a neoadjuvant trial is merited, with attention to predictors of response to SPRM therapy, and inclusion of pre- and postmenopausal women.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas de Hormônios/uso terapêutico , Norpregnadienos/uso terapêutico , Receptores de Progesterona/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Método Duplo-Cego , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Antígeno Ki-67/metabolismo , Menopausa , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Estadiamento de Neoplasias , Receptor ErbB-2/genética , Análise de Sequência de RNA/métodos , Resultado do Tratamento
3.
Breast Cancer Res ; 21(1): 124, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771627

RESUMO

BACKGROUND: Women, who carry a germline BRCA1 gene mutation, have a markedly increased risk of developing breast cancer during their lifetime. While BRCA1 carriers frequently develop triple-negative, basal-like, aggressive breast tumors, hormone signaling is important in the genesis of BRCA1 mutant breast cancers. We investigated the hormone response in BRCA1-mutated benign breast tissue using an in vitro organoid system. METHODS: Scaffold-free, multicellular human breast organoids generated from benign breast tissues from non-carrier or BRCA1 mutation carriers were treated in vitro with a stepwise menstrual cycle hormone regimen of estradiol (E2) and progesterone (P4) over the course of 28 days. RESULTS: Breast organoids exhibited characteristics of the native breast tissue, including expression of hormone receptors, collagen production, and markers of luminal and basal epithelium, and stromal fibroblasts. RNA sequencing analysis revealed distinct gene expression in response to hormone treatment in the non-carrier and BRCA1-mutated organoids. The selective progesterone receptor modulator, telapristone acetate (TPA), was used to identify specifically PR regulated genes. Specifically, extracellular matrix organization genes were regulated by E2+P4+TPA in the BRCA1-mutated organoids but not in the non-carrier organoids. In contrast, in the non-carrier organoids, known PR target genes such as the cell cycle genes were inhibited by TPA. CONCLUSIONS: These data show that BRCA1 mutation influences hormone response and in particular PR activity which differs from that of non-carrier organoids. Our organoid model system revealed important insights into the role of PR in BRCA1-mutated benign breast cells and the critical paracrine actions that modify hormone receptor (HR)-negative cells. Further analysis of the molecular mechanism of BRCA1 and PR crosstalk is warranted using this model system.


Assuntos
Proteína BRCA1/genética , Glândulas Mamárias Humanas/metabolismo , Mutação , Organoides/metabolismo , Progesterona/metabolismo , Biomarcadores , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Hormônios/metabolismo , Humanos , Imuno-Histoquímica , Glândulas Mamárias Humanas/patologia , Organoides/patologia , Técnicas de Cultura de Tecidos
4.
Proc Natl Acad Sci U S A ; 116(23): 11437-11443, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31110002

RESUMO

Limited knowledge of the changes in estrogen receptor (ER) signaling during the transformation of the normal mammary gland to breast cancer hinders the development of effective prevention and treatment strategies. Differences in estrogen signaling between normal human primary breast epithelial cells and primary breast tumors obtained immediately following surgical excision were explored. Transcriptional profiling of normal ER+ mature luminal mammary epithelial cells and ER+ breast tumors revealed significant difference in the response to estrogen stimulation. Consistent with these differences in gene expression, the normal and tumor ER cistromes were distinct and sufficient to segregate normal breast tissues from breast tumors. The selective enrichment of the DNA binding motif GRHL2 in the breast cancer-specific ER cistrome suggests that it may play a role in the differential function of ER in breast cancer. Depletion of GRHL2 resulted in altered ER binding and differential transcriptional responses to estrogen stimulation. Furthermore, GRHL2 was demonstrated to be essential for estrogen-stimulated proliferation of ER+ breast cancer cells. DLC1 was also identified as an estrogen-induced tumor suppressor in the normal mammary gland with decreased expression in breast cancer. In clinical cohorts, loss of DLC1 and gain of GRHL2 expression are associated with ER+ breast cancer and are independently predictive for worse survival. This study suggests that normal ER signaling is lost and tumor-specific ER signaling is gained during breast tumorigenesis. Unraveling these changes in ER signaling during breast cancer progression should aid the development of more effective prevention strategies and targeted therapeutics.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Receptores de Estrogênio/genética , Transdução de Sinais/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Células Epiteliais/patologia , Estrogênios/genética , Feminino , Humanos , Células MCF-7 , Fatores de Transcrição/genética
5.
Oncotarget ; 9(4): 4282-4300, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435103

RESUMO

Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR-targeted therapies to the clinic.

6.
Xenobiotica ; 48(10): 973-983, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29050522

RESUMO

1. There is limited knowledge regarding the metabolism of megestrol acetate (MA), as it was approved by FDA in 1971, prior to the availability of modern tools for identifying specific drug-metabolizing enzymes. We determined the cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) that metabolize MA, identified oxidative metabolites and determined pharmacologic activity at the progesterone, androgen and glucocorticoid receptors (PR, AR and GR, respectively). 2. Oxidative metabolites were produced using human liver microsomes (HLMs), and isolated for mass spectral (MS) and nuclear magnetic resonance (NMR) analyses. We screened recombinant P450s using MA at 62 µM (HLM Km for metabolite 1; M1) and 28 µM (HLM Km for metabolite 2; M2). UGT isoforms were simultaneously incubated with UDPGA, nicotinamide adenine dinucleotide phosphate (NADPH), CYP3A4 and MA. Metabolites were evaluated for pharmacologic activity on the PR, AR and GR. CYP3A4 and CYP3A5 are responsible for oxidative metabolism of 62 µM MA. 3. At 28 µM substrate concentration, CYP3A4 was the only contributing enzyme. Mass spectral and NMR data suggest metabolism of MA to two alcohols. After oxidation, MA is converted into two secondary glucuronides by UGT2B17 among other UGTs. MA, M1 and M2 had significant pharmacologic activity on the PR while only MA showed activity on the AR and GR.


Assuntos
Acetato de Megestrol/metabolismo , Metaboloma , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Glucuronídeos/metabolismo , Humanos , Cetoconazol/farmacologia , Cinética , Acetato de Megestrol/química , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Oxirredução , Antígeno Prostático Específico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Troleandomicina/farmacologia
7.
Mol Cancer Res ; 15(10): 1331-1340, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28684637

RESUMO

The progesterone receptor (PR) regulates transcriptional programs that drive proliferation, survival, and stem cell phenotypes. Although the role of native progesterone in the development of breast cancer remains controversial, PR clearly alters the transcriptome in breast tumors. This study identifies a class of genes, Interferon (IFN)-stimulated genes (ISGs), potently downregulated by ligand-activated PR which have not been previously shown to be regulated by PR. Progestin-dependent transcriptional repression of ISGs was observed in breast cancer cell line models and human breast tumors. Ligand-independent regulation of ISGs was also observed, as basal transcript levels were markedly higher in cells with PR knockdown. PR repressed ISG transcription in response to IFN treatment, the canonical mechanism through which these genes are activated. Liganded PR is robustly recruited to enhancer regions of ISGs, and ISG transcriptional repression is dependent upon PR's ability to bind DNA. In response to PR activation, key regulatory transcription factors that are required for IFN-activated ISG transcription, STAT2 and IRF9, exhibit impaired recruitment to ISG promoter regions, correlating with PR/ligand-dependent ISG transcriptional repression. IFN activation is a critical early step in nascent tumor recognition and destruction through immunosurveillance. As the large majority of breast tumors are PR positive at the time of diagnosis, PR-dependent downregulation of IFN signaling may be a mechanism through which early PR-positive breast tumors evade the immune system and develop into clinically relevant tumors.Implications: This study highlights a novel transcriptional mechanism through which PR drives breast cancer development and potentially evades the immune system. Mol Cancer Res; 15(10); 1331-40. ©2017 AACR.


Assuntos
Neoplasias da Mama/genética , Redes Reguladoras de Genes , Interferons/farmacologia , Receptores de Progesterona/metabolismo , Ativação Transcricional/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Progestinas/farmacologia , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Nat Commun ; 7: 12893, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27634217

RESUMO

Here we describe a sensitive and novel method of identifying endogenous DNA-DNA interactions. Capture of Associated Targets on CHromatin (CATCH) uses efficient capture and enrichment of specific genomic loci of interest through hybridization and subsequent purification via complementary biotinylated oligonucleotide. The CATCH assay requires no enzymatic digestion or ligation, requires little starting material, provides high-quality data, has excellent reproducibility and is completed in less than 24 h. Efficacy is demonstrated through capture of three disparate loci, which demonstrate unique subsets of long-distance chromatin interactions enriched for both enhancer marks and oestrogen receptor-binding sites. In each experiment, CATCH-seq peaks representing long-distance chromatin interactions were centred near the TSS of genes, and, critically, the genes identified as physically interacting are shown to be transcriptionally coexpressed. These interactions could potentially create transcriptional hubs for the regulation of gene expression programmes.


Assuntos
Cromatina , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA , Retículo Endoplasmático , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Regulação da Expressão Gênica , Genômica , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Análise de Sequência de DNA/métodos
9.
Sci Adv ; 2(6): e1501924, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386569

RESUMO

The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER(+) (estrogen receptor-positive)/PR(+) human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER(+)/PR(+) breast cancers should be explored.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estudo de Associação Genômica Ampla , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Cromatina/genética , Cromatina/metabolismo , Análise por Conglomerados , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Genes BRCA1 , Genômica , Humanos , Terapia de Alvo Molecular , Nucleossomos/metabolismo , Motivos de Nucleotídeos , Fenótipo , Progestinas/metabolismo , Progestinas/farmacologia , Prognóstico , Ligação Proteica , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Transdução de Sinais , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Resultado do Tratamento
10.
PLoS One ; 5(6): e11318, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20593002

RESUMO

Spatial compression among the longer DNA fragments occurs during DNA electrophoresis in agarose and non-agarose gels when using certain ions in the conductive buffer, impairing the range of fragment sizes resolved well in a single gel. Substitutions using various polyhydroxyl anions supported the underlying phenomenon as the complexation of Lewis acids to DNA. We saw significant improvements using conditions (lithium borate 10 mM cations, pH 6.5) favoring the formation of borate polyanions and having lower conductance and Joule heating, delayed electrolyte exhaustion, faster electrophoretic run-speed, and sharper separation of DNA bands from 100 bp to 12 kb in a single run.


Assuntos
Ácidos , Boratos/química , DNA/isolamento & purificação , Eletroforese em Gel de Ágar/métodos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...