Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytometry B Clin Cytom ; 94(2): 312-326, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27784127

RESUMO

BACKGROUND: Bone marrow examination has been the confirmatory test for congenital dyserythropoietic anemia type II (CDAII). Occasional spherocytes on peripheral blood smear can confound the diagnosis. Since a screening test is still unavailable, we explored the feasibility of using flow cytometry as a preliminary screening method. METHODS: Thirteen monoclonal antibodies with specificities for eight erythrocyte membrane proteins were used in FACS analysis to probe the cellular features of red cells from CDAII, normal adults, hereditary spherocytosis (HS), and cord red cells. Confocal microscopy was performed on normal and CDAII to determine the overall distribution of CD44 and CD47. Their expression levels on cultured erythroblasts were also analyzed. RESULTS: The densely stained band 3 as seen in CDAII in gel electrophoresis was also obtained for Dantu phenotype. Likewise analysis of CDAII cases (n = 26) using the eosin-5'maleimide (EMA) binding test found 57% of patients giving results either positive or in the grey area for HS. Enhanced fluorescence of CD44 was detected in 96% of the CDAII patients, and anti-CD47 binding was also elevated to a lesser degree. Although RNA expressions of CD44 and CD47 in the cultured erythroblasts of normal controls and CDAII were similar, confocal microscopy revealed more CDAII red cells giving elevated fluorescence than normal red cells. CONCLUSIONS: A distinction between CDAII and HS can be made using the EMA Binding test and anti-CD44 binding. Confirmation of CDAII can subsequently be made based on clinical presentation together with either bone marrow examination or DNA sequencing of SEC23B. © 2016 International Clinical Cytometry Society.


Assuntos
Anemia Diseritropoética Congênita/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Receptores de Hialuronatos/metabolismo , Esferocitose Hereditária/metabolismo , Antígeno CD47/metabolismo , Eritrócitos/metabolismo , Feminino , Citometria de Fluxo/métodos , Humanos , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Fenótipo
2.
Blood ; 95(1): 12-8, 2000 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-10607679

RESUMO

Antigens of the Rh blood group system are encoded by 2 homologous genes, RHD and RHCE, that produce 2 red cell membrane proteins. The D-negative phenotype is considered to result, almost invariably, from homozygosity for a complete deletion of RHD. The basis of all PCR tests for predicting fetal D phenotype from DNA obtained from amniocytes or maternal plasma is detection of the presence of RHD. These tests are used in order to ascertain the risk of hemolytic disease of the newborn. We have identified an RHD pseudogene (RHD psi) in Rh D-negative Africans. RHDpsi contains a 37 base pair (bp) insert in exon 4, which may introduce a stop codon at position 210. The insert is a sequence duplication across the boundary of intron 3 and exon 4. RHDpsi contains another stop codon in exon 6. The frequency of RHDpsi in black South Africans is approximately 0.0714. Of 82 D-negative black Africans, 66% had RHDpsi, 15% had the RHD-CE-D hybrid gene associated with the VS+ V- phenotype, and only 18% completely lacked RHD. RHDpsi is present in about 24% of D-negative African Americans and 17% of D-negative South Africans of mixed race. No RHD transcript could be detected in D-negative individuals with RHDpsi, probably as a result of nonsense-mediated mRNA decay. Existing PCR-based methods for predicting D phenotype from DNA are not suitable for testing Africans or any population containing a substantial proportion of people with African ethnicity. Consequently, we have developed a new test that detects the 37 bp insert in exon 4 of RHDpsi. (Blood. 2000; 95:12-18)


Assuntos
População Negra/genética , Glicoproteínas/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Pseudogenes , Proteínas Recombinantes de Fusão , Sistema do Grupo Sanguíneo Rh-Hr , Sequência de Aminoácidos , Anemia Hemolítica Congênita/genética , Sequência de Bases , Doadores de Sangue , Etnicidade/genética , Éxons , Feminino , Gana , Glicoproteínas/química , Humanos , Proteína Huntingtina , Recém-Nascido , Íntrons , Louisiana , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Fenótipo , Reação em Cadeia da Polimerase , Gravidez , Pseudogenes/genética , Sequências Repetitivas de Ácido Nucleico , Fatores de Risco , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , África do Sul , Transcrição Gênica , Zimbábue
3.
Cancer Res ; 59(14): 3454-60, 1999 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10416610

RESUMO

Severe immunodeficiency characterized by lymphopenia was found in two siblings, one of whom was examined in detail. The calcium flux, pattern of tyrosine phosphorylation of proteins, and interleukin 2 (IL-2) production and proliferation in response to mitogens suggested that the peripheral blood T cells activated normally. The peripheral blood T cells were shown to have an activated phenotype with increased expression of CD45RO+ and CD95/Fas. Increased spontaneous apoptosis occurred in unstimulated lymphocyte cultures. The elevated apoptosis was not due to alterations in expression or to mutations in Bcl-2, Bcl-X(L), or Flip, nor could the spontaneous apoptosis be prevented by blocking Fas, suggesting that it was independent of Fas signaling. This is the first inherited combined immunodeficiency associated with impaired lymphocyte survival. Fibroblasts derived from the patient showed appreciable radiosensitivity in clonal assays, but apoptosis was not elevated. Our results show that the fibroblasts represent a new radiosensitive phenotype not associated with cell cycle checkpoint defects, V(D)J recombination defects, or elevated chromosome breakage. We suggest that the affected gene plays a role in an undetermined damage response mechanism that results in elevated spontaneous apoptosis in lymphoid cells and radiosensitivity in fibroblasts.


Assuntos
Apoptose , Fibroblastos/efeitos da radiação , Síndromes de Imunodeficiência/patologia , Linfócitos/efeitos da radiação , Imunodeficiência Combinada Severa/patologia , Apoptose/efeitos da radiação , Criança , Pré-Escolar , Inversão Cromossômica , Cromossomos Humanos Par 7/ultraestrutura , Dano ao DNA , Reparo do DNA , DNA Complementar/genética , Feminino , Fibroblastos/patologia , Raios gama , Humanos , Linfócitos/patologia , Masculino , Tolerância a Radiação , Imunodeficiência Combinada Severa/genética , Transdução de Sinais/fisiologia , Translocação Genética
4.
Mol Cell Biol ; 19(5): 3267-77, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10207052

RESUMO

Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3' deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity.


Assuntos
Antígenos Nucleares , DNA Helicases , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/metabolismo , Recombinação Genética/genética , Animais , Células CHO , Sobrevivência Celular/genética , Células Clonais/metabolismo , Células Clonais/efeitos da radiação , Cricetinae , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/genética , Expressão Gênica/genética , Humanos , Autoantígeno Ku , Proteínas Nucleares/metabolismo , Mutação Puntual/genética , Deleção de Sequência/genética , Transfecção
5.
Nucleic Acids Res ; 26(8): 1965-73, 1998 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-9518490

RESUMO

The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) is a member of a sub-family of phosphatidylinositol (PI) 3-kinases termed PIK-related kinases. A distinguishing feature of this sub-family is the presence of a conserved C-terminal region downstream of a PI 3-kinase domain. Mutants defective in DNA-PKcs are sensitive to ionising radiation and are unable to carry out V(D)J recombination. Irs-20 is a DNA-PKcs-defective cell line with milder gamma-ray sensitivity than two previously characterised mutants, V-3 and mouse scid cells. Here we show that the DNA-PKcs protein from irs-20 cells can bind to DNA but is unable to function as a protein kinase. To verify the defect in irs-20 cells and provide insight into the function and expression of DNA-PKcs in double-strand break repair and V(D)J recombination we introduced YACs encoding human and mouse DNA-PKcs into defective mutants and achieved complementation of the defective phenotypes. Furthermore, in irs-20 we identified a mutation in DNA-PKcs that causes substitution of a lysine for a glutamic acid in the fourth residue from the C-terminus. This represents a strong candidate for the inactivating mutation and provides supportive evidence that the extreme C-terminal motif is important for protein kinase activity.


Assuntos
Sobrevivência Celular/efeitos da radiação , Proteínas de Ligação a DNA , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células CHO , Linhagem Celular , Cromossomos Artificiais de Levedura , Cricetinae , DNA/metabolismo , Dano ao DNA , DNA Nucleotidiltransferases/metabolismo , Reparo do DNA , Proteína Quinase Ativada por DNA , Relação Dose-Resposta à Radiação , Raios gama , Biblioteca Gênica , Cavalos , Humanos , Camundongos , Camundongos SCID , Proteínas Nucleares , Fosfatidilinositol 3-Quinases/metabolismo , Reação em Cadeia da Polimerase , Transfecção , VDJ Recombinases
6.
J Mol Biol ; 279(2): 375-85, 1998 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-9642044

RESUMO

Mutations in genes controlling the correct functioning of the replicative, repair and recombination machineries may lead to genomic instability. A high level of spontaneous chromosomal aberrations amplified by treatment with DNA cross-linking agents is the hallmark of Fanconi anemia (FA), an inherited chromosomal instability syndrome associated with cancer proneness. Two of the eight FA genes have been cloned (FAA and FAC), but their function has not yet been defined. The lack of homology with known genes suggests the involvement of FA genes in a novel pathway specific to vertebrates. Using a DNA end-joining assay in cultured cells, we studied the processing of both blunt and cohesive-ended double strand breaks (DSB) in normal and FA cells. The results show that: (i) the overall ligation efficiency is normal in FA lymphoblasts; (ii) in FA-C, error-free processing of blunt-ended DSB is markedly decreased, resulting in a higher deletion frequency and larger deletion size; (iii) the fidelity of processing of blunt-DSB is completely restored in FACC cells (complemented with wild-type FAC gene) and the deletion size shifted to values similar to that observed in normal cells; (iv) the fidelity of cohesive end-joining is not affected in FA cells; (v) activities and/or expression of known factors involved in DSB processing, such as the components of the DNA-PK complex and XRCC4, are normal in FA cells. Our results provide strong evidence that the lack of a functional FAC gene results in loss of fidelity of end-joining, which likely accounts for the FA-C phenotype of chromosome instability. We conclude that FAC, and perhaps all FA gene products, are likely to play a role in the fidelity of end-joining of specific DSB.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA/genética , Proteínas de Ligação a DNA , DNA/genética , DNA/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas Nucleares , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Aberrações Cromossômicas , Reparo do DNA/genética , Replicação do DNA , Proteína Quinase Ativada por DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi , Humanos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Recombinação Genética , Deleção de Sequência , Especificidade por Substrato
7.
Mol Cell Biol ; 17(3): 1264-73, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9032253

RESUMO

The gene product defective in radiosensitive CHO mutants belonging to ionizing radiation complementation group 5, which includes the extensively studied xrs mutants, has recently been identified as Ku80, a subunit of the Ku protein and a component of DNA-dependent protein kinase (DNA-PK). Several group 5 mutants, including xrs-5 and -6, lack double-stranded DNA end-binding and DNA-PK activities. In this study, we examined additional xrs mutants at the molecular and biochemical levels. All mutants examined have low or undetectable levels of Ku70 and Ku80 protein, end-binding, and DNA-PK activities. Only one mutant, xrs-6, has Ku80 transcript levels detectable by Northern hybridization, but Ku80 mRNA was detectable by reverse transcription-PCR in most other mutants. Two mutants, xrs-4 and -6, have altered Ku80 transcripts resulting from mutational changes in the genomic Ku80 sequence affecting RNA splicing, indicating that the defects in these mutants lie in the Ku80 gene rather than a gene controlling its expression. Neither of these two mutants has detectable wild-type Ku80 transcript. Since the mutation in both xrs-4 and xrs-6 cells results in severely truncated Ku80 protein, both are likely candidates to be null mutants. Azacytidine-induced revertants of xrs-4 and -6 carried both wild-type and mutant transcripts. The results with these revertants strongly support our model proposed earlier, that CHO-K1 cells carry a copy of the Ku80 gene (XRCC5) silenced by hypermethylation. Site-directed mutagenesis studies indicate that previously proposed ATP-binding and phosphorylation sites are not required for Ku80 activity, whereas N-terminal deletions of more than the first seven amino acids result in severe loss of activities.


Assuntos
Antígenos Nucleares , Células CHO , DNA Helicases , Proteínas de Ligação a DNA/genética , Mutação , Proteínas Nucleares/genética , Tolerância a Radiação/genética , Animais , Azacitidina/farmacologia , Células CHO/efeitos da radiação , Cricetinae , DNA/metabolismo , DNA Complementar/genética , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/metabolismo , Raios gama , Dosagem de Genes , Teste de Complementação Genética , Autoantígeno Ku , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , RNA Mensageiro/análise , Análise de Sequência de DNA , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...