Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426642

RESUMO

Tumour hypoxia promotes poor patient outcomes, with particularly strong evidence for head and neck squamous cell carcinoma (HNSCC). To effectively target hypoxia, therapies require selection biomarkers and preclinical models that can accurately model tumour hypoxia. We established 20 patient-derived xenograft (PDX) and cell line-derived xenograft (CDX) models of HNSCC that we characterised for their fidelity to represent clinical HNSCC in gene expression, hypoxia status and proliferation and that were evaluated for their sensitivity to hypoxia-activated prodrugs (HAPs). PDX models showed greater fidelity in gene expression to clinical HNSCC than cell lines, as did CDX models relative to their paired cell lines. PDX models were significantly more hypoxic than CDX models, as assessed by hypoxia gene signatures and pimonidazole immunohistochemistry, and showed similar hypoxia gene expression to clinical HNSCC tumours. Hypoxia or proliferation status alone could not determine HAP sensitivity across our 20 HNSCC and two non-HNSCC tumour models by either tumour growth inhibition or killing of hypoxia cells in an ex vivo clonogenic assay. In summary, our tumour models provide clinically relevant HNSCC models that are suitable for evaluating hypoxia-targeting therapies; however, additional biomarkers to hypoxia are required to accurately predict drug sensitivity.

2.
Explor Target Antitumor Ther ; 3(3): 297-320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045910

RESUMO

The development of endocrine resistance is a common reason for the failure of endocrine therapies in hormone receptor-positive breast cancer. This review provides an overview of the different types of in vitro models that have been developed as tools for studying endocrine resistance. In vitro models include cell lines that have been rendered endocrine-resistant by ex vivo treatment; cell lines with de novo resistance mechanisms, including genetic alterations; three-dimensional (3D) spheroid, co-culture, and mammosphere techniques; and patient-derived organoid models. In each case, the key discoveries, different analysis strategies that are suitable, and strengths and weaknesses are discussed. Certain recently developed methodologies that can be used to further characterize the biological changes involved in endocrine resistance are then emphasized, along with a commentary on the types of research outcomes that using these techniques can support. Finally, a discussion anticipates how these recent developments will shape future trends in the field. We hope this overview will serve as a useful resource for investigators that are interested in understanding and testing hypotheses related to mechanisms of endocrine therapy resistance.

3.
Cancer Gene Ther ; 29(7): 1021-1032, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34837065

RESUMO

Advances in the field of cancer immunotherapy have stimulated renewed interest in adenoviruses as oncolytic agents. Clinical experience has shown that oncolytic adenoviruses are safe and well tolerated but possess modest single-agent activity. One approach to improve the potency of oncolytic viruses is to utilise their tumour selectivity to deliver genes encoding prodrug-activating enzymes. These enzymes can convert prodrugs into cytotoxic species within the tumour; however, these cytotoxins can interfere with viral replication and limit utility. In this work, we evaluated the activity of a nitroreductase (NTR)-armed oncolytic adenovirus ONYX-411NTR in combination with the clinically tested bioreductive prodrug PR-104. Both NTR-expressing cells in vitro and xenografts containing a minor population of NTR-expressing cells were highly sensitive to PR-104. Pharmacologically relevant prodrug exposures did not interfere with ONYX-411NTR replication in vitro. In vivo, prodrug administration increased virus titre and improved virus distribution within tumour xenografts. Colonisation of tumours with high ONYX-411NTR titre resulted in NTR expression and prodrug activation. The combination of ONYX-411NTR with PR-104 was efficacious against HCT116 xenografts, whilst neither prodrug nor virus were active as single agents. This work highlights the potential for future clinical development of NTR-armed oncolytic viruses in combination with bioreductive prodrugs.


Assuntos
Aziridinas , Neoplasias , Terapia Viral Oncolítica , Pró-Fármacos , Adenoviridae , Aziridinas/farmacologia , Aziridinas/uso terapêutico , Humanos , Neoplasias/terapia , Compostos de Mostarda Nitrogenada , Nitrorredutases/genética , Nitrorredutases/metabolismo , Vírus Oncolíticos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
4.
Nat Rev Clin Oncol ; 18(12): 751-772, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34326502

RESUMO

Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.


Assuntos
Neoplasias/terapia , Oxigênio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/efeitos da radiação , Humanos , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação
5.
Cancers (Basel) ; 12(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322840

RESUMO

Patient survival from head and neck squamous cell carcinoma (HNSCC), the seventh most common cause of cancer, has not markedly improved in recent years despite the approval of targeted therapies and immunotherapy agents. Precision medicine approaches that seek to individualise therapy through the use of predictive biomarkers and stratification strategies offer opportunities to improve therapeutic success in HNSCC. To enable precision medicine of HNSCC, an understanding of the microenvironment that influences tumour growth and response to therapy is required alongside research tools that recapitulate the features of human tumours. In this review, we highlight the importance of the tumour microenvironment in HNSCC, with a focus on tumour hypoxia, and discuss the fidelity of patient-derived xenograft and organoids for modelling human HNSCC and response to therapy. We describe the benefits of patient-derived models over alternative preclinical models and their limitations in clinical relevance and how these impact their utility in precision medicine in HNSCC for the discovery of new therapeutic agents, as well as predictive biomarkers to identify patients' most likely to respond to therapy.

6.
BMC Cancer ; 20(1): 470, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450839

RESUMO

BACKGROUND: Glutamine serves as an important nutrient with many cancer types displaying glutamine dependence. Following cellular uptake glutamine is converted to glutamate in a reaction catalysed by mitochondrial glutaminase. This glutamate has many uses, including acting as an anaplerotic substrate (via alpha-ketoglutarate) to replenish TCA cycle intermediates. CB-839 is a potent, selective, orally bioavailable inhibitor of glutaminase that has activity in Triple receptor-Negative Breast Cancer (TNBC) cell lines and evidence of efficacy in advanced TNBC patients. METHODS: A panel of eleven breast cancer cell lines was used to investigate the anti-proliferative effects of the glutaminase inhibitors CB-839 and BPTES in different types of culture medium, with or without additional pyruvate supplementation. The abundance of the TCA cycle intermediate fumarate was quantified as a measure if TCA cycle anaplerosis. Pyruvate secretion by TNBC cultures was then assessed with or without AZD3965, a monocarboxylate transporter 1 (MCT1) inhibitor. Finally, two dimensional (2D) monolayer and three dimensional (3D) spheroid assays were used to compare the effect of microenvironmental growth conditions on CB-839 activity. RESULTS: The anti-proliferative activity of CB-839 in a panel of breast cancer cell lines was similar to published reports, but with a major caveat; growth inhibition by CB-839 was strongly attenuated in culture medium containing pyruvate. This pyruvate-dependent attenuation was also observed with a related glutaminase inhibitor, BPTES. Studies demonstrated that exogenous pyruvate acted as an anaplerotic substrate preventing the decrease of fumarate in CB-839-treated conditions. Furthermore, endogenously produced pyruvate secreted by TNBC cell lines was able to act in a paracrine manner to significantly decrease the sensitivity of recipient cells to glutaminase inhibition. Suppression of pyruvate secretion using the MCT1 inhibitor AZD3965, antagonised this paracrine effect and increased CB-839 activity. Finally, CB-839 activity was significantly compromised in 3D compared with 2D TNBC culture models, suggesting that 3D microenvironmental features impair glutaminase inhibitor responsiveness. CONCLUSION: This study highlights the potential influence that both circulating and tumour-derived pyruvate can have on glutaminase inhibitor efficacy. Furthermore, it highlights the benefits of 3D spheroid cultures to model the features of the tumour microenvironment and improve the in vitro investigation of cancer metabolism-targeted therapeutics.


Assuntos
Benzenoacetamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Ácido Pirúvico/metabolismo , Tiadiazóis/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral
7.
Thromb Haemost ; 120(4): 671-686, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32289863

RESUMO

The release of calcium ions (Ca2+) from the endoplasmic reticulum (ER) and related store-operated calcium entry (SOCE) regulate maturation of normal megakaryocytes. The N-methyl-D-aspartate (NMDA) receptor (NMDAR) provides an additional mechanism for Ca2+ influx in megakaryocytic cells, but its role remains unclear. We created a model of NMDAR hypofunction in Meg-01 cells using CRISPR-Cas9 mediated knockout of the GRIN1 gene, which encodes an obligate, GluN1 subunit of the NMDAR. We found that compared with unmodified Meg-01 cells, Meg-01-GRIN1 -/- cells underwent atypical differentiation biased toward erythropoiesis, associated with increased basal ER stress and cell death. Resting cytoplasmic Ca2+ levels were higher in Meg-01-GRIN1 -/- cells, but ER Ca2+ release and SOCE were lower after activation. Lysosome-related organelles accumulated including immature dense granules that may have contributed an alternative source of intracellular Ca2+. Microarray analysis revealed that Meg-01-GRIN1 -/- cells had deregulated expression of transcripts involved in Ca2+ metabolism, together with a shift in the pattern of hematopoietic transcription factors toward erythropoiesis. In keeping with the observed pro-cell death phenotype induced by GRIN1 deletion, memantine (NMDAR inhibitor) increased cytotoxic effects of cytarabine in unmodified Meg-01 cells. In conclusion, NMDARs comprise an integral component of the Ca2+ regulatory network in Meg-01 cells that help balance ER stress and megakaryocytic-erythroid differentiation. We also provide the first evidence that megakaryocytic NMDARs regulate biogenesis of lysosome-related organelles, including dense granules. Our results argue that intracellular Ca2+ homeostasis may be more important for normal megakaryocytic and erythroid differentiation than currently recognized; thus, modulation may offer therapeutic opportunities.


Assuntos
Eritrócitos/fisiologia , Megacariócitos/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Apoptose/genética , Sistemas CRISPR-Cas , Cálcio/metabolismo , Sinalização do Cálcio , Carcinogênese , Diferenciação Celular , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Homeostase , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Receptores de N-Metil-D-Aspartato/genética , Trombopoese
8.
Chem Asian J ; 14(8): 1238-1248, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30615821

RESUMO

Tumour hypoxia plays an important role in tumour progression and resistance to therapy. Under hypoxia unfolded proteins accumulate in the endoplasmic reticulum (ER) and this stress is relieved through the protein kinase R-like ER kinase (PERK) signalling arm of the unfolded protein response (UPR). Targeting the UPR through PERK kinase inhibitors provides tumour growth inhibition, but also elicits on-mechanism normal tissue toxicity. Hypoxia presents a target for tumour-selective drug delivery using hypoxia-activated prodrugs. We designed and prepared hypoxia-activated prodrugs of modified PERK inhibitors using a 2-nitroimidazole bioreductive trigger. The new inhibitors retained PERK kinase inhibitory activity and the corresponding prodrugs were strongly deactivated. The prodrugs were able to undergo fragmentation following radiolytic reduction, or bioreduction in HCT116 cells, to release their effectors, albeit inefficiently. We examined the effects of the prodrugs on PERK signalling in hypoxic HCT116 cells. This study has identified a 2-substituted nitroimidazole carbamate prodrug with potential to deliver PERK inhibitors in a hypoxia-selective manner.


Assuntos
Hipóxia/metabolismo , Nitroimidazóis/metabolismo , Nitroimidazóis/farmacologia , Pró-Fármacos/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , eIF-2 Quinase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Desenho de Fármacos , Células HCT116 , Humanos , Estrutura Molecular , Nitroimidazóis/síntese química , Nitroimidazóis/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , eIF-2 Quinase/metabolismo
9.
Front Oncol ; 8: 425, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30370249

RESUMO

Background: Most human breast cancer cell lines currently in use were developed and are cultured under ambient (21%) oxygen conditions. While this is convenient in practical terms, higher ambient oxygen could increase oxygen radical production, potentially modulating signaling pathways. We have derived and grown a series of four human breast cancer cell lines under 5% oxygen, and have compared their properties to those of established breast cancer lines growing under ambient oxygen. Methods: Cell lines were characterized in terms of appearance, cellular DNA content, mutation spectrum, hormone receptor status, pathway utilization and drug sensitivity. Results: Three of the four lines (NZBR1, NZBR2, and NZBR4) were triple negative (ER-, PR-, HER2-), with NZBR1 also over-expressing EGFR. NZBR3 was HER2+ and ER+ and also over-expressed EGFR. Cell lines grown in 5% oxygen showed increased expression of the hypoxia-inducible factor 1 (HIF-1) target gene carbonic anhydrase 9 (CA9) and decreased levels of ROS. As determined by protein phosphorylation, NZBR1 showed low AKT pathway utilization while NZBR2 and NZBR4 showed low p70S6K and rpS6 pathway utilization. The lines were characterized for sensitivity to 7-hydroxytamoxifen, doxorubicin, paclitaxel, the PI3K inhibitor BEZ235 and the HER inhibitors lapatinib, afatinib, dacomitinib, and ARRY-380. In some cases they were compared to established breast cancer lines. Of particular note was the high sensitivity of NZBR3 to HER inhibitors. The spectrum of mutations in the NZBR lines was generally similar to that found in commonly used breast cancer cell lines but TP53 mutations were absent and mutations in EVI2B, LRP1B, and PMS2, which have not been reported in other breast cancer lines, were detected. The results suggest that the properties of cell lines developed under low oxygen conditions (5% O2) are similar to those of commonly used breast cancer cell lines. Although reduced ROS production and increased HIF-1 activity under 5% oxygen can potentially influence experimental outcomes, no difference in sensitivity to estrogen or doxorubicin was observed between cell lines cultured in 5 vs. 21% oxygen.

10.
Angew Chem Int Ed Engl ; 54(21): 6217-21, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25864491

RESUMO

The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure-activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion.


Assuntos
Proteínas Cromossômicas não Histona/antagonistas & inibidores , Descoberta de Drogas , Lactamas/química , Lactamas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Modelos Moleculares , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
11.
J Enzyme Inhib Med Chem ; 30(5): 689-721, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25347767

RESUMO

The hypoxic areas of solid cancers represent a negative prognostic factor irrespective of which treatment modality is chosen for the patient. Still, after almost 80 years of focus on the problems created by hypoxia in solid tumours, we still largely lack methods to deal efficiently with these treatment-resistant cells. The consequences of this lack may be serious for many patients: Not only is there a negative correlation between the hypoxic fraction in tumours and the outcome of radiotherapy as well as many types of chemotherapy, a correlation has been shown between the hypoxic fraction in tumours and cancer metastasis. Thus, on a fundamental basis the great variety of problems related to hypoxia in cancer treatment has to do with the broad range of functions oxygen (and lack of oxygen) have in cells and tissues. Therefore, activation-deactivation of oxygen-regulated cascades related to metabolism or external signalling are important areas for the identification of mechanisms as potential targets for hypoxia-specific treatment. Also the chemistry related to reactive oxygen radicals (ROS) and the biological handling of ROS are part of the problem complex. The problem is further complicated by the great variety in oxygen concentrations found in tissues. For tumour hypoxia to be used as a marker for individualisation of treatment there is a need for non-invasive methods to measure oxygen routinely in patient tumours. A large-scale collaborative EU-financed project 2009-2014 denoted METOXIA has studied all the mentioned aspects of hypoxia with the aim of selecting potential targets for new hypoxia-specific therapy and develop the first stage of tests for this therapy. A new non-invasive PET-imaging method based on the 2-nitroimidazole [(18)F]-HX4 was found to be promising in a clinical trial on NSCLC patients. New preclinical models for testing of the metastatic potential of cells were developed, both in vitro (2D as well as 3D models) and in mice (orthotopic grafting). Low density quantitative real-time polymerase chain reaction (qPCR)-based assays were developed measuring multiple hypoxia-responsive markers in parallel to identify tumour hypoxia-related patterns of gene expression. As possible targets for new therapy two main regulatory cascades were prioritised: The hypoxia-inducible-factor (HIF)-regulated cascades operating at moderate to weak hypoxia (<1% O(2)), and the unfolded protein response (UPR) activated by endoplasmatic reticulum (ER) stress and operating at more severe hypoxia (<0.2%). The prioritised targets were the HIF-regulated proteins carbonic anhydrase IX (CAIX), the lactate transporter MCT4 and the PERK/eIF2α/ATF4-arm of the UPR. The METOXIA project has developed patented compounds targeting CAIX with a preclinical documented effect. Since hypoxia-specific treatments alone are not curative they will have to be combined with traditional anti-cancer therapy to eradicate the aerobic cancer cell population as well.


Assuntos
Descoberta de Drogas , Neoplasias/tratamento farmacológico , Animais , Hipóxia Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , Neoplasias/patologia , Relação Estrutura-Atividade
12.
Angew Chem Weinheim Bergstr Ger ; 127(21): 6315-6319, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27346896

RESUMO

The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure-activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion.

13.
J Am Chem Soc ; 136(26): 9308-19, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24946055

RESUMO

Small-molecule inhibitors that target bromodomains outside of the bromodomain and extra-terminal (BET) sub-family are lacking. Here, we describe highly potent and selective ligands for the bromodomain module of the human lysine acetyl transferase CBP/p300, developed from a series of 5-isoxazolyl-benzimidazoles. Our starting point was a fragment hit, which was optimized into a more potent and selective lead using parallel synthesis employing Suzuki couplings, benzimidazole-forming reactions, and reductive aminations. The selectivity of the lead compound against other bromodomain family members was investigated using a thermal stability assay, which revealed some inhibition of the structurally related BET family members. To address the BET selectivity issue, X-ray crystal structures of the lead compound bound to the CREB binding protein (CBP) and the first bromodomain of BRD4 (BRD4(1)) were used to guide the design of more selective compounds. The crystal structures obtained revealed two distinct binding modes. By varying the aryl substitution pattern and developing conformationally constrained analogues, selectivity for CBP over BRD4(1) was increased. The optimized compound is highly potent (Kd = 21 nM) and selective, displaying 40-fold selectivity over BRD4(1). Cellular activity was demonstrated using fluorescence recovery after photo-bleaching (FRAP) and a p53 reporter assay. The optimized compounds are cell-active and have nanomolar affinity for CBP/p300; therefore, they should be useful in studies investigating the biological roles of CBP and p300 and to validate the CBP and p300 bromodomains as therapeutic targets.


Assuntos
Proteína de Ligação a CREB/química , Proteína p300 Associada a E1A/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Técnicas de Química Sintética , Cristalografia por Raios X , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Proteína p300 Associada a E1A/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Genes p53 , Células HeLa/efeitos dos fármacos , Humanos , Indóis/química , Isoxazóis/química , Ligantes , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
14.
Clin Cancer Res ; 19(11): 2791-3, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23613319

RESUMO

Angiogenesis inhibitors cause increased hypoxia in tumors and this results in the induction of cytoprotective autophagy. Targeting this adaptation using autophagy inhibitors can overcome resistance to antiangiogenic therapy and enhance the antitumor effects.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Animais , Feminino , Humanos
15.
Biochem J ; 449(2): 389-400, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23078367

RESUMO

Hypoxia in the microenvironment of many solid tumours is an important determinant of malignant progression. The ISR (integrated stress response) protects cells from the ER (endoplasmic reticulum) stress caused by severe hypoxia. Likewise, autophagy is a mechanism by which cancer cells can evade hypoxic cell death. In the present paper we report that the autophagy-initiating kinase ULK1 (UNC51-like kinase 1) is a direct transcriptional target of ATF4 (activating transcription factor 4), which drives the expression of ULK1 mRNA and protein in severe hypoxia and ER stress. We demonstrate that ULK1 is required for autophagy in severe hypoxia and that ablation of ULK1 causes caspase-3/7-independent cell death. Furthermore, we report that ULK1 expression is associated with a poor prognosis in breast cancer. Collectively, the findings of the present study identify transcriptional up-regulation of ULK1 as a novel arm of the ISR, and suggest ULK1 as a potentially effective target for cancer therapy.


Assuntos
Fator 4 Ativador da Transcrição/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Ativação Transcricional , Regulação para Cima , Fator 4 Ativador da Transcrição/metabolismo , Animais , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Estresse do Retículo Endoplasmático/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células MCF-7 , Camundongos , Análise Multivariada , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida
16.
Expert Opin Ther Targets ; 16(12): 1189-202, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23009153

RESUMO

INTRODUCTION: Activating transcription factor 4 (ATF4) is a member of the activating transcription factor family. ATF4 expression is increased in response to a diverse array of microenvironmental stresses including amino acid depletion, oxidative stress and endoplasmic reticulum (ER) stress that are sensed by upstream eukaryotic translation initiation factor 2α (eIF2α) kinases. In tumours, ATF4 expression is detected in hypoxic- and nutrient-deprived regions where it promotes metabolic homeostasis and cancer cell survival by transcriptionally regulating amino acid uptake and biosynthesis, autophagy, redox balance and angiogenesis. AREAS COVERED: The mechanism governing translational expression of ATF4 is discussed along with the physiological roles of ATF4 in growth and development. Conditions that result in ATF4 expression in tumours are described with a focus on the role of ATF4 in cancer progression and treatment resistance. Several approaches to target ATF4 are presented including strategies aimed at inhibiting transcriptional activity or increasing degradation, approaches to reduce ATF4 translation by inhibiting upstream eIF2α kinases and targeting of downstream pathways that are regulated by ATF4 including amino acid biosynthesis, ER-associated degradation and autophagy. EXPERT OPINION: The authors provide a number of suggestions that may assist in the development of ATF4 inhibitors.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Neoplasias/metabolismo , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Humanos , Neoplasias/tratamento farmacológico
17.
Molecules ; 14(11): 4517-45, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19924084

RESUMO

Gene directed enzyme prodrug therapy (GDEPT) of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV), cytosine deaminase (CD) from bacteria or yeast with 5-fluorocytodine (5-FC), and bacterial nitroreductase (NfsB) with 5-(azaridin-1-yl)-2,4-dinitrobenzamide (CB1954), and their respective derivatives.


Assuntos
Terapia Genética/métodos , Pró-Fármacos/uso terapêutico , Animais , Aziridinas/uso terapêutico , Citosina Desaminase/genética , Citosina Desaminase/fisiologia , Flucitosina/uso terapêutico , Ganciclovir/uso terapêutico , Humanos , Nitrorredutases/genética , Nitrorredutases/fisiologia , Timidina Quinase/genética
18.
Cell Cycle ; 8(23): 3838-47, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19887912

RESUMO

Tumor hypoxia confers resistance to many modalities of anticancer therapy. The endoplasmic reticulum (ER) is highly sensitive to severe hypoxic stress and results in the activation of the unfolded protein response. ATF4 is the main transcriptional regulator of the cellular hypoxic response to the Unfolded Protein Response (UPR) and activates genes that promote restoration of normal ER function and survival under hypoxia. Elevated expression of ATF4 is associated with resistance to current chemotherapeutic drugs including DNA-interactive and damaging agents, nonsteroidal anti-inflammatory drugs and proteasome inhibitors. ATF4 decreases the antitumor activity of chemotherapy by mechanisms involving expression of genes involved in oxidative stress resistance, redox homeostasis and inhibitors of apoptosis. ATF4 plays also a crucial role in resistance to proteasomal inhibitor bortezomib (PS-341) by the induction of prosurvival pathways, such as autophagy, that can relieve the protein overload in bortezomib treated cells. Inhibition of ATF4 represents an attractive stand-alone therapy as well as an opportunity to enhance the efficacy of current chemotherapeutic agents without causing high tissue toxicity to normal tissues.


Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Autofagia , Neoplasias/metabolismo , Fator 4 Ativador da Transcrição/genética , Hipóxia Celular , Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...