Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 269: 116256, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461679

RESUMO

Visceral leishmaniasis is a potentially fatal disease caused by infection by the intracellular protist pathogens Leishmania donovani or Leishmania infantum. Present therapies are ineffective because of high costs, variable efficacy against different species, the requirement for hospitalization, toxicity and drug resistance. Detailed analysis of previously published hit molecules suggested a crucial role of 'guanidine' linkage for their efficacy against L. donovani. Here we report the design of 2-aminoquinazoline heterocycle as a basic pharmacophore-bearing guanidine linkage. The introduction of various groups and functionality at different positions of the quinazoline scaffold results in enhanced antiparasitic potency with modest host cell cytotoxicity using a physiologically relevant THP-1 transformed macrophage infection model. In terms of the ADME profile, the C7 position of quinazoline was identified as a guiding tool for designing better molecules. The good ADME profile of the compounds suggests that they merit further consideration as lead compounds for treating visceral leishmaniasis.


Assuntos
Leishmania donovani , Leishmania infantum , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/tratamento farmacológico , Antiparasitários/farmacologia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico
2.
Elife ; 122024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393325

RESUMO

T cells are crucial for efficient antigen-specific immune responses and thus their migration within the body, to inflamed tissues from circulating blood or to secondary lymphoid organs, plays a very critical role. T cell extravasation in inflamed tissues depends on chemotactic cues and interaction between endothelial adhesion molecules and cellular integrins. A migrating T cell is expected to sense diverse external and membrane-intrinsic mechano-physical cues, but molecular mechanisms of such mechanosensing in cell migration are not established. We explored if the professional mechanosensor Piezo1 plays any role during integrin-dependent chemotaxis of human T cells. We found that deficiency of Piezo1 in human T cells interfered with integrin-dependent cellular motility on ICAM-1-coated surface. Piezo1 recruitment at the leading edge of moving T cells is dependent on and follows focal adhesion formation at the leading edge and local increase in membrane tension upon chemokine receptor activation. Piezo1 recruitment and activation, followed by calcium influx and calpain activation, in turn, are crucial for the integrin LFA1 (CD11a/CD18) recruitment at the leading edge of the chemotactic human T cells. Thus, we find that Piezo1 activation in response to local mechanical cues constitutes a membrane-intrinsic component of the 'outside-in' signaling in human T cells, migrating in response to chemokines, that mediates integrin recruitment to the leading edge.


Assuntos
Quimiocinas , Canais Iônicos , Linfócitos T , Humanos , Adesão Celular , Movimento Celular , Quimiotaxia , Antígeno-1 Associado à Função Linfocitária , Canais Iônicos/metabolismo
3.
mBio ; 14(3): e0059023, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37052373

RESUMO

Cases of rhino-orbital mucormycosis in patients suffering from severe coronavirus disease 2019 (COVID-19) were reported in different parts of the world, especially in India. However, specific immune mechanisms that are linked to susceptibility to COVID-19-associated mucormycosis (CAM) remain largely unexplored. We aimed to explore whether the differential regulation of circulating cytokines in CAM patients had any potential pathogenic links with myeloid phagocyte function and susceptibility to mucormycosis. A small cohort of Indian patients suffering from CAM (N = 9) as well as COVID-19 patients with no evidence of mucormycosis (N = 5) were recruited in the study. Venous blood was collected from the patients as well as from healthy volunteers (N = 8). Peripheral blood mononuclear cells and plasma were isolated. Plasma samples were used to measure a panel of 48 cytokines. CD14+ monocytes were isolated and used for a flow cytometric phagocytosis assay as well as a global transcriptome analysis via RNA-sequencing. A multiplex cytokine analysis of the plasma samples revealed reduction in a subset of cytokines in CAM patients, which is known to potentiate the activation, migration, or phagocytic activity of myeloid cells, compared to the COVID-19 patients who did not contract mucormycosis. Compared to monocytes from healthy individuals, peripheral blood CD14+ monocytes from CAM patients were significantly deficient in phagocytic function. The monocyte transcriptome also revealed that pathways related to endocytic pathways, phagosome maturation, and the cytoskeletal regulation of phagocytosis were significantly downregulated in CAM patients. Thus, the study reports a significant deficiency in the phagocytic activity of monocytes, which is a critical effector mechanism for the antifungal host defense, in patients with CAM. This result is in concordance with results regarding the specific cytokine signature and monocyte transcriptome. IMPORTANCE A number of cases of mucormycosis, often fatal, were reported among severe COVID-19 patients from India as well as from some other parts of the world. However, specific immunocellular mechanisms that underlie susceptibility to this fungal infection in COVID-19 remain largely unexplored. Our study reports a deficiency in phagocytosis by monocytes in COVID-19 patients who are concomitantly afflicted with mucormycosis, with this deficiency being linked to a characteristic monocyte transcriptome as well as a circulating cytokine signature. The functional phenotype and cytokine signature of the monocytes may provide useful biomarkers for detecting potential susceptibility to mucormycosis in COVID-19 as well as in other viral infections.


Assuntos
COVID-19 , Mucormicose , Humanos , Monócitos , Leucócitos Mononucleares , Fagocitose , Citocinas
4.
Viruses ; 15(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36851762

RESUMO

Severe COVID-19 frequently features a systemic deluge of cytokines. Circulating cytokines that can stratify risks are useful for more effective triage and management. Here, we ran a machine-learning algorithm on a dataset of 36 plasma cytokines in a cohort of severe COVID-19 to identify cytokine/s useful for describing the dynamic clinical state in multiple regression analysis. We performed RNA-sequencing of circulating blood cells collected at different time-points. From a Bayesian Information Criterion analysis, a combination of interleukin-8 (IL-8), Eotaxin, and Interferon-γ (IFNγ) was found to be significantly linked to blood oxygenation over seven days. Individually testing the cytokines in receiver operator characteristics analyses identified IL-8 as a strong stratifier for clinical outcomes. Circulating IL-8 dynamics paralleled disease course. We also revealed key transitions in immune transcriptome in patients stratified for circulating IL-8 at three time-points. The study identifies plasma IL-8 as a key pathogenic cytokine linking systemic hyper-inflammation to the clinical outcomes in COVID-19.


Assuntos
COVID-19 , Interleucina-8 , Humanos , Teorema de Bayes , Citocinas , Progressão da Doença
5.
J Med Chem ; 65(17): 11607-11632, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35959635

RESUMO

Undesirable activation of endosomal toll-like receptors TLR7 and TLR9 present in specific immune cells in response to host-derived ligands is implicated in several autoimmune diseases and other contexts of autoreactive inflammation, making them important therapeutic targets. We report a drug development strategy identifying a new chemotype for incorporating relevant structural subunits into the basic imidazopyridine core deemed necessary for potent TLR7 and TLR9 dual antagonism. We established minimal pharmacophoric features in the core followed by hit-to-lead optimization, guided by in vitro and in vivo biological assays and ADME. A ligand-receptor binding hypothesis was proposed, and selectivity studies against TLR8 were performed. Oral absorption and efficacy of lead candidate 42 were established through favorable in vitro pharmacokinetics and in vivo pharmacodynamic studies, with IC50 values of 0.04 and 0.47 µM against TLR9 and TLR7, respectively. The study establishes imidazopyridine as a viable chemotype to therapeutically target TLR9 and TLR7 in relevant clinical contexts.


Assuntos
Receptor 7 Toll-Like , Receptor Toll-Like 9 , Imidazóis/farmacologia , Ligantes , Piridinas/farmacologia , Receptor 7 Toll-Like/metabolismo
6.
FASEB Bioadv ; 4(2): 121-137, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35141476

RESUMO

Optimal cell spreading and interplay of vascular smooth muscle cells (VSMC), inflammatory cells, and cell adhesion molecules (CAM) are critical for progressive atherosclerosis and cardiovascular complications. The role of vitronectin (VTN), a major cell attachment glycoprotein, in the pathogenesis of atherosclerosis remains elusive. In this study, we attempt to examine the pathological role of VTN in arterial plaque progression and inflammation. We found that, relative expression analysis of VTN from the liver of Apolipoprotein E (ApoE) Knockout mice revealed that atherosclerotic progression induced by feeding mice with high cholesterol diet (HCD) causes a significant downregulation of VTN mRNA as well as protein after 60 days. Promoter assay confirmed that cholesterol modulates the expression of VTN by influencing its promoter. Mimicking VTN reduction with siRNA in HCD fed ApoE Knockout mice, accelerated athero-inflammation with an increase in NF-kB, ICAM-1, and VCAM-1 at the site of the plaque along with upregulation of inflammatory proteins like MCP-1 and IL-1ß in the plasma. Also, matrix metalloprotease (MMP)-9 and MMP-12 expression were increased and collagen content was decreased in the plaque, in VTN deficient condition. This might pose a challenge to plaque integrity. Human subjects with acute coronary syndrome or having risk factors of atherosclerosis have lower levels of VTN compared to healthy controls suggesting a clinical significance of plasma VTN in the pathophysiology of coronary artery disease. We establish that, VTN plays a pivotal role in cholesterol-driven atherosclerosis and aortic inflammation and might be a useful indicator for atherosclerotic plaque burden and stability.

7.
Front Immunol ; 12: 738093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777349

RESUMO

Disease caused by SARS-CoV-2 coronavirus (COVID-19) led to significant morbidity and mortality worldwide. A systemic hyper-inflammation characterizes severe COVID-19 disease, often associated with acute respiratory distress syndrome (ARDS). Blood biomarkers capable of risk stratification are of great importance in effective triage and critical care of severe COVID-19 patients. Flow cytometry and next-generation sequencing were done on peripheral blood cells and urokinase-type plasminogen activator receptor (suPAR), and cytokines were measured from and mass spectrometry-based proteomics was done on plasma samples from an Indian cohort of COVID-19 patients. Publicly available single-cell RNA sequencing data were analyzed for validation of primary data. Statistical analyses were performed to validate risk stratification. We report here higher plasma abundance of suPAR, expressed by an abnormally expanded myeloid cell population, in severe COVID-19 patients with ARDS. The plasma suPAR level was found to be linked to a characteristic plasma proteome, associated with coagulation disorders and complement activation. Receiver operator characteristic curve analysis to predict mortality identified a cutoff value of suPAR at 1,996.809 pg/ml (odds ratio: 2.9286, 95% confidence interval 1.0427-8.2257). Lower-than-cutoff suPAR levels were associated with a differential expression of the immune transcriptome as well as favorable clinical outcomes, in terms of both survival benefit (hazard ratio: 0.3615, 95% confidence interval 0.1433-0.912) and faster disease remission in our patient cohort. Thus, we identified suPAR as a key pathogenic circulating molecule linking systemic hyperinflammation to the hypercoagulable state and stratifying clinical outcomes in severe COVID-19 patients with ARDS.


Assuntos
COVID-19/sangue , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , SARS-CoV-2 , Adulto , Idoso , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/imunologia , Proteínas Sanguíneas/análise , COVID-19/imunologia , Citocinas/sangue , Humanos , Inflamação/sangue , Inflamação/imunologia , Pessoa de Meia-Idade , Células Mieloides/imunologia , Proteoma/análise , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/imunologia , Índice de Gravidade de Doença , Adulto Jovem
8.
J Med Chem ; 64(13): 9279-9301, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34142551

RESUMO

Several toll-like receptors (TLRs) reside inside endosomes of specific immune cells-among them, aberrant activation of TLR7 and TLR9 is implicated in myriad contexts of autoimmune diseases, making them promising therapeutic targets. However, small-molecule TLR7 and TLR9 antagonists are not yet available for clinical use. We illustrate here the importance of C2, C6, and N9 substitutions in the purine scaffold for antagonism to TLR7 and TLR9 through structure-activity relationship studies using cellular reporter assays and functional studies on primary human immune cells. Further in vitro and in vivo pharmacokinetic studies identified an orally bioavailable lead compound 29, with IC50 values of 0.08 and 2.66 µM against TLR9 and TLR7, respectively. Isothermal titration calorimetry excluded direct TLR ligand-antagonist interactions. In vivo antagonism efficacy against mouse TLR9 and therapeutic efficacy in a preclinical murine model of psoriasis highlighted the potential of compound 29 as a therapeutic candidate in relevant autoimmune contexts.


Assuntos
Purinas/farmacologia , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor Toll-Like 9/antagonistas & inibidores , Administração Oral , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Purinas/administração & dosagem , Purinas/química , Ratos , Relação Estrutura-Atividade
9.
J Med Chem ; 63(9): 4776-4789, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32302115

RESUMO

Toll-like receptor 7 (TLR7) is an established therapeutic target in myriad autoimmune disorders, but no TLR7 antagonist is available for clinical use to date. Herein, we report a purine scaffold TLR7 antagonist, first-of-its-kind to our knowledge, which was developed by rationally dissecting the structural requirements for TLR7-targeted activity for a purine scaffold. Specifically, we identified a singular chemical switch at C-2 that could make a potent purine scaffold TLR7 agonist to lose agonism and acquire antagonist activity, which could further be potentiated by the introduction of an additional basic center at C-6. We ended up developing a clinically relevant TLR7 antagonist with favorable pharmacokinetics and 70.8% oral bioavailability in mice. Moreover, the TLR7 antagonists depicted excellent selectivity against TLR8. To further validate the in vivo applicability of this novel TLR7 antagonist, we demonstrated its excellent efficacy in preventing TLR7-induced pathology in a preclinical murine model of psoriasis.


Assuntos
Fármacos Dermatológicos/uso terapêutico , Purinas/uso terapêutico , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/antagonistas & inibidores , Animais , Sítios de Ligação , Células CACO-2 , Fármacos Dermatológicos/síntese química , Fármacos Dermatológicos/metabolismo , Fármacos Dermatológicos/farmacocinética , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Psoríase/tratamento farmacológico , Psoríase/patologia , Purinas/síntese química , Purinas/metabolismo , Purinas/farmacocinética , Pele/patologia , Relação Estrutura-Atividade , Receptor 7 Toll-Like/metabolismo
10.
BMC Complement Altern Med ; 19(1): 261, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533701

RESUMO

BACKGROUND: Our previous study exhibited free radicals scavenging and antioxidant activities of ethanolic and aqueous extracts of Tamarindus indica L. leaves in chronic sodium fluoride poisoning in rats. Tamarindus indica L. seed extract was also reported to have anti-arthritic efficacy by inhibiting cartilage and bone degrading factors. Therefore, an attempt was made to evaluate the effects of ethanolic extract of Tamarindus indica L. leaves in septic arthritis. METHODS: The safety study was performed by oral dosing of ethanolic extract of the plant leaves at 2 g kg- 1 for consecutive 28 days in rabbits. Septic arthritis was induced in rabbits by single intra-articular inoculation of 104 c.f.u. of Staphylococcus aureus to the left stifle joint and was monitored by bacterial colony count, some relevant biochemical parameters and histopathological interpretation of the affected joint. For efficacy evaluation in septic arthritis, linezolid at 75 mg kg- 1 twice daily for 10 days and the ethanolic extract of Tamarindus indica L. at 500 and 1000 mg kg- 1 for consecutive 14 days were administered orally to the rabbits after 48 h of induction of arthritis. RESULTS: In sub-acute toxicity study of Tamarindus indica L. leaves ethanolic extract, no significant change between days was found for aspertate aminotransferase, alanine transaminase, alkaline phosphatase, blood urea nitrogen and creatinine compared to day 0 values of the same group. The bacterial colony count of synovial fluid following Staphylococcus aureus inoculation to left stifle joint was found to be 1.08 ± 0.47 and 1.19 ± 0.29 c.f.u. mL- 1 in ethanolic extract low dose and high dose groups respectively, on day 2 which was reduced to 0.057 ± 0.036 c.f.u. mL- 1 and nil on day 16. The test extract was also found to markedly reduce simultaneous glucose difference, total protein ratio of serum and synovial fluid, joint radius and joint narrowing. CONCLUSION: Ethanolic extract of Tamarindus indica L. leaves at 500 mg kg- 1 and 1000 mg kg- 1 produced anti-arthritic effects against S. aureus induced septic arthritis in rabbits. However, the ethanolic extract at 1000 mg kg- 1 orally for consecutive 14 days showed better effects in septic arthritis.


Assuntos
Antibacterianos/administração & dosagem , Artrite Infecciosa/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Tamarindus/química , Animais , Antibacterianos/efeitos adversos , Antibacterianos/química , Artrite Infecciosa/microbiologia , Feminino , Humanos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Folhas de Planta/química , Coelhos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
11.
Front Immunol ; 10: 1878, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440253

RESUMO

Plasmacytoid dendritic cells are the most efficient producers of type I interferons, viz. IFNα, in the body and thus have the ability to influence anti-tumor immune responses. But repression of effective intra-tumoral pDC activation is a key immuno-evasion strategy exhibited in tumors-tumor-recruited pDCs are rendered "tolerogenic," characterized by deficiency in IFNα induction and ability to expand regulatory T cells in situ. But the tumor-derived factors that drive this functional reprogramming of intra-tumoral pDCs are not established. In this study we aimed at exploring if intra-tumoral abundance of the oncometabolite lactate influences intra-tumoral pDC function. We found that lactate attenuates IFNα induction by pDCs mediated by intracellular Ca2+ mobilization triggered by cell surface GPR81 receptor as well as directly by cytosolic import of lactate in pDCs through the cell surface monocarboxylate transporters, affecting cellular metabolism needed for effective pDC activation. We also found that lactate enhances tryptophan metabolism and kynurenine production by pDCs which contribute to induction of FoxP3+ CD4+ regulatory T cells, the major immunosuppressive immune cell subset in tumor microenvironment. We validated these mechanisms of lactate-driven pDC reprogramming by looking into tumor recruited pDCs isolated from patients with breast cancers as well as in a preclinical model of breast cancer in mice. Thus, we discovered a hitherto unknown link between intra-tumoral abundance of an oncometabolite resulting from metabolic adaptation in cancer cells and the pro-tumor tolerogenic function of tumor-recruited pDCs, revealing new therapeutic targets for potentiating anti-cancer immune responses.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Células Dendríticas/imunologia , Ácido Láctico/imunologia , Evasão Tumoral/fisiologia , Animais , Reprogramação Celular/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Ácido Láctico/metabolismo , Camundongos , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...