Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1147: 125-135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147875

RESUMO

Pericytes have long been known to contribute indirectly to tumour growth by regulating angiogenesis. Thus, remodelling tumour blood vessels to maintain blood supply is critical for continued tumour growth. A role for pericytes in restricting leakage of tumour cells through blood vessels has also become evident given that adequate pericyte coverage of these blood vessels is critical for maintaining vascular permeability. Interestingly, the relocation of pericytes from blood vessels to the tumour microenvironment results in the emergence of different properties in these cells that actively promote tumour growth and metastasis-functions not associated with their well-studied role in vascular stability and permeability. These form the focus of this review.


Assuntos
Metástase Neoplásica , Neoplasias , Pericitos , Humanos , Neovascularização Patológica , Microambiente Tumoral
2.
Bio Protoc ; 8(18): e3020, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395808

RESUMO

Bioluminescence imaging (BLI) technology is an advanced method of carrying out molecular imaging on live laboratory animals in vivo. This powerful technique is widely-used in studying a variety of biological processes, and it has been an ideal tool in exploring tumor growth and metastatic spread in real-time. This technique ensures the optimal use of laboratory animal resources, particularly the ethical principle of reduction in animal use, given its non-invasive nature, ensuring that ongoing biological processes can be studied over time in the same animal, without the need to euthanize groups of mice at specific time points. In this protocol, the luciferase imaging technique was developed to study the effect of co-inoculating pericytes (contractile, αSMA+ mesenchymal stem cell-like cells, located abluminally in microvessels) on the growth and metastatic spread of ovarian cancers using an aggressive ovarian cancer cell line-OVCAR-5-as an example.

3.
Nat Commun ; 8: 14756, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303898

RESUMO

Several novel therapeutics are poised to change the natural history of chronic lymphocytic leukaemia (CLL) and the increasing use of these therapies has highlighted limitations of traditional disease monitoring methods. Here we demonstrate that circulating tumour DNA (ctDNA) is readily detectable in patients with CLL. Importantly, ctDNA does not simply mirror the genomic information contained within circulating malignant lymphocytes but instead parallels changes across different disease compartments following treatment with novel therapies. Serial ctDNA analysis allows clonal dynamics to be monitored over time and identifies the emergence of genomic changes associated with Richter's syndrome (RS). In addition to conventional disease monitoring, ctDNA provides a unique opportunity for non-invasive serial analysis of CLL for molecular disease monitoring.


Assuntos
DNA Tumoral Circulante/genética , Evolução Clonal/genética , Leucemia Linfocítica Crônica de Células B/genética , Adenina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína 3 com Repetições IAP de Baculovírus/genética , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , DNA Tumoral Circulante/sangue , Progressão da Doença , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Fator 88 de Diferenciação Mieloide/genética , Fosfoproteínas/genética , Piperidinas , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Fatores de Processamento de RNA/genética , Receptor Notch1/genética , Sulfonamidas/uso terapêutico , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética
4.
Blood ; 129(12): 1685-1690, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28126926

RESUMO

The diagnosis and monitoring of myelodysplastic syndromes (MDSs) are highly reliant on bone marrow morphology, which is associated with substantial interobserver variability. Although azacitidine is the mainstay of treatment in MDS, only half of all patients respond. Therefore, there is an urgent need for improved modalities for the diagnosis and monitoring of MDSs. The majority of MDS patients have either clonal somatic karyotypic abnormalities and/or gene mutations that aid in the diagnosis and can be used to monitor treatment response. Circulating cell-free DNA is primarily derived from hematopoietic cells, and we surmised that the malignant MDS genome would be a major contributor to cell-free DNA levels in MDS patients as a result of ineffective hematopoiesis. Through analysis of serial bone marrow and matched plasma samples (n = 75), we demonstrate that cell-free circulating tumor DNA (ctDNA) is directly comparable to bone marrow biopsy in representing the genomic heterogeneity of malignant clones in MDS. Remarkably, we demonstrate that serial monitoring of ctDNA allows concurrent tracking of both mutations and karyotypic abnormalities throughout therapy and is able to anticipate treatment failure. These data highlight the role of ctDNA as a minimally invasive molecular disease monitoring strategy in MDS.


Assuntos
DNA de Neoplasias/sangue , Monitoramento de Medicamentos/métodos , Síndromes Mielodisplásicas/diagnóstico , Azacitidina/uso terapêutico , Exame de Medula Óssea , Células Clonais/patologia , DNA de Neoplasias/genética , Humanos , Cariotipagem , Mutação , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Reação em Cadeia da Polimerase
5.
JCO Precis Oncol ; 1: 1-14, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35172485

RESUMO

PURPOSE: Circulating tumor DNA (ctDNA) allows noninvasive disease monitoring across a range of malignancies. In metastatic melanoma, the extent to which ctDNA reflects changes in metabolic disease burden assessed by 18F-labeled fluorodeoxyglucose positron emission tomography (FDG-PET) is unknown. We assessed the role of ctDNA analysis in combination with FDG-PET to monitor tumor burden and genomic heterogeneity throughout treatment. PATIENTS AND METHODS: We performed a comprehensive analysis of serial ctDNA and FDG-PET in 52 patients who received systemic therapy for metastatic melanoma. Next-generation sequencing and digital polymerase chain reaction were used to analyze plasma samples from the cohort. RESULTS: ctDNA levels were monitored across patients with mutant BRAF, NRAS, and BRAF/NRAS wild type disease. Mutant BRAF and NRAS ctDNA levels correlated closely with changes in metabolic disease burden throughout treatment. TERT promoter mutant ctDNA levels also paralleled changes in tumor burden, which provide an alternative marker for disease monitoring. Of note, subcutaneous and cerebral disease sites were not well represented in plasma. Early changes in ctDNA and metabolic disease burden were important indicators of treatment response. Patients with an early decrease in ctDNA post-treatment had improved progression-free survival compared with patients in whom ctDNA levels remained unchanged or increased over time (hazard ratio, 2.6; P = .05). ctDNA analysis contributed key molecular information through the identification of putative resistance mechanisms to targeted therapy. A detailed comparison of the genomic architecture of plasma and multiregional tumor biopsy specimens at autopsy revealed the ability of ctDNA to comprehensively capture genomic heterogeneity across multiple disease sites. CONCLUSION: The findings highlight the powerful role of ctDNA in metastatic melanoma as a complementary modality to functional imaging that allows real-time monitoring of both tumor burden and genomic changes throughout therapy.

6.
Clin Cancer Res ; 22(7): 1813-24, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26589433

RESUMO

PURPOSE: The aim of this study was to investigate the role of pericytes in regulating malignant ovarian cancer progression. EXPERIMENTAL DESIGN: The pericyte mRNA signature was used to interrogate ovarian cancer patient datasets to determine its prognostic value for recurrence and mortality. Xenograft models of ovarian cancer were used to determine if co-injection with pericytes affected tumor growth rate and metastasis, whereas co-culture models were utilized to investigate the direct effect of pericytes on ovarian cancer cells. Pericyte markers were used to stain patient tissue samples to ascertain their use in prognosis. RESULTS: Interrogation of two serous ovarian cancer patient datasets [the Australian Ovarian Cancer Study, n= 215; and the NCI TCGA (The Cancer Genome Atlas), n= 408] showed that a high pericyte score is highly predictive for poor patient prognosis. Co-injection of ovarian cancer (OVCAR-5 & -8) cells with pericytes in a xenograft model resulted in accelerated ovarian tumor growth, and aggressive metastases, without altering tumor vasculature. Pericyte co-culture in vitro promoted ovarian cancer cell proliferation and invasion. High αSMA protein levels in patient tissue microarrays were correlated with more aggressive disease and earlier recurrence. CONCLUSIONS: High pericyte score provides the best means to date of identifying patients with ovarian cancer at high risk of rapid relapse and mortality (mean progression-free survival time < 9 months). The stroma contains rare yet extremely potent locally resident mesenchymal stem cells-a subset of "cancer-associated fibroblasts" that promote aggressive tumor growth and metastatic dissemination, underlying the prognostic capacity of a high pericyte score to strongly predict earlier relapse and mortality.


Assuntos
Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Pericitos/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional/métodos , Cistadenocarcinoma Seroso/mortalidade , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos , Gradação de Tumores , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Prognóstico , Recidiva , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nature ; 525(7570): 538-42, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26367796

RESUMO

Bromodomain and extra terminal protein (BET) inhibitors are first-in-class targeted therapies that deliver a new therapeutic opportunity by directly targeting bromodomain proteins that bind acetylated chromatin marks. Early clinical trials have shown promise, especially in acute myeloid leukaemia, and therefore the evaluation of resistance mechanisms is crucial to optimize the clinical efficacy of these drugs. Here we use primary mouse haematopoietic stem and progenitor cells immortalized with the fusion protein MLL-AF9 to generate several single-cell clones that demonstrate resistance, in vitro and in vivo, to the prototypical BET inhibitor, I-BET. Resistance to I-BET confers cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance is not mediated through increased drug efflux or metabolism, but is shown to emerge from leukaemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 is globally reduced in resistant cells, whereas the expression of key target genes such as Myc remains unaltered, highlighting the existence of alternative mechanisms to regulate transcription. We demonstrate that resistance to BET inhibitors, in human and mouse leukaemia cells, is in part a consequence of increased Wnt/ß-catenin signalling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. Together, these findings provide new insights into the biology of acute myeloid leukaemia, highlight potential therapeutic limitations of BET inhibitors, and identify strategies that may enhance the clinical utility of these unique targeted therapies.


Assuntos
Benzodiazepinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Azepinas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/metabolismo , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes myc/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Triazóis/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...