Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 75, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044206

RESUMO

BACKGROUND: Among the non-traditional antibacterial agents in development, only a few targets critical Gram-negative bacteria such as carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter baumannii or cephalosporin-resistant Enterobacteriaceae. Endolysins and their genetically modified versions meet the World Health Organization criteria for innovation, have a novel mode of antibacterial action, no known bacterial cross-resistance, and are being intensively studied for application against Gram-negative pathogens. METHODS: The study presents a multidisciplinary approach, including genetic engineering of LysECD7-SMAP and production of recombinant endolysin, its analysis by crystal structure solution following molecular dynamics simulations and evaluation of antibacterial properties. Two types of antimicrobial dosage forms were formulated, resulting in lyophilized powder for injection and hydroxyethylcellulose gel for topical administration. Their efficacy was estimated in the treatment of sepsis, and pneumonia models in BALB/c mice, diabetes-associated wound infection in the leptin receptor-deficient db/db mice and infected burn wounds in rats. RESULTS: In this work, we investigate the application strategies of the engineered endolysin LysECD7-SMAP and its dosage forms evaluated in preclinical studies. The catalytic domain of the enzyme shares the conserved structure of endopeptidases containing a putative antimicrobial peptide at the C-terminus of polypeptide chain. The activity of endolysins has been demonstrated against a range of pathogens, such as Klebsiella pneumoniae, A. baumannii, P. aeruginosa, Staphylococcus haemolyticus, Achromobacter spp, Burkholderia cepacia complex and Haemophylus influenzae, including those with multidrug resistance. The efficacy of candidate dosage forms has been confirmed in in vivo studies. Some aspects of the interaction of LysECD7-SMAP with cell wall molecular targets are also discussed. CONCLUSIONS: Our studies demonstrate the potential of LysECD7-SMAP therapeutics for the systemic or topical treatment of infectious diseases caused by susceptible Gram-negative bacterial species and are critical to proceed LysECD7-SMAP-based antimicrobials trials to advanced stages.


Assuntos
Endopeptidases , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Camundongos Endogâmicos BALB C , Animais , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Camundongos , Endopeptidases/farmacologia , Endopeptidases/administração & dosagem , Bactérias Gram-Negativas/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Ratos , Masculino , Engenharia de Proteínas/métodos
2.
Front Immunol ; 15: 1381508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690272

RESUMO

Seasonal influenza remains a serious global health problem, leading to high mortality rates among the elderly and individuals with comorbidities. Vaccination is generally accepted as the most effective strategy for influenza prevention. While current influenza vaccines are effective, they still have limitations, including narrow specificity for certain serological variants, which may result in a mismatch between vaccine antigens and circulating strains. Additionally, the rapid variability of the virus poses challenges in providing extended protection beyond a single season. Therefore, mRNA technology is particularly promising for influenza prevention, as it enables the rapid development of multivalent vaccines and allows for quick updates of their antigenic composition. mRNA vaccines have already proven successful in preventing COVID-19 by eliciting rapid cellular and humoral immune responses. In this study, we present the development of a trivalent mRNA vaccine candidate, evaluate its immunogenicity using the hemagglutination inhibition assay, ELISA, and assess its efficacy in animals. We demonstrate the higher immunogenicity of the mRNA vaccine candidate compared to the inactivated split influenza vaccine and its enhanced ability to generate a cross-specific humoral immune response. These findings highlight the potential mRNA technology in overcoming current limitations of influenza vaccines and hold promise for ensuring greater efficacy in preventing seasonal influenza outbreaks.


Assuntos
Imunidade Humoral , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vacinas de mRNA , Animais , Feminino , Humanos , Camundongos , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Humoral/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos Endogâmicos BALB C , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/química , Vacinas de mRNA/genética , Vacinas de mRNA/imunologia , Estações do Ano , Fatores de Tempo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia
3.
Vaccines (Basel) ; 12(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675761

RESUMO

SARS-CoV-2 variants have evolved over time in recent years, demonstrating immune evasion of vaccine-induced neutralizing antibodies directed against the original S protein. Updated S-targeted vaccines provide a high level of protection against circulating variants of SARS-CoV-2, but this protection declines over time due to ongoing virus evolution. To achieve a broader protection, novel vaccine candidates involving additional antigens with low mutation rates are currently needed. Based on our recently studied mRNA lipid nanoparticle (mRNA-LNP) platform, we have generated mRNA-LNP encoding SARS-CoV-2 structural proteins M, N, S from different virus variants and studied their immunogenicity separately or in combination in vivo. As a result, all mRNA-LNP vaccine compositions encoding the S and N proteins induced excellent titers of RBD- and N-specific binding antibodies. The T cell responses were mainly specific CD4+ T cell lymphocytes producing IL-2 and TNF-alpha. mRNA-LNP encoding the M protein did not show a high immunogenicity. High neutralizing activity was detected in the sera of mice vaccinated with mRNA-LNP encoding S protein (alone or in combinations) against closely related strains, but was undetectable or significantly lower against an evolutionarily distant variant. Our data showed that the addition of mRNAs encoding S and M antigens to mRNA-N in the vaccine composition enhanced the immunogenicity of mRNA-N and induced a more robust immune response to the N protein. Based on our results, we suggested that the S protein plays a key role in enhancing the immune response to the N protein when they are both encoded in the mRNA-LNP vaccine.

4.
Antiviral Res ; 225: 105871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555022

RESUMO

The spread of COVID-19 continues due to genetic variation in SARS-CoV-2. Highly mutated variants of SARS-CoV-2 have an increased transmissibility and immune evasion. Due to the emergence of various new variants of the virus, there is an urgent need to develop broadly effective specific drugs for therapeutic strategies for the prevention and treatment of COVID-19. Molnupiravir (EIDD-2801, MK-4482), is an orally bioavailable ribonucleoside analogue of ß-D-N4-hydroxycytidine (NHC), has demonstrated efficacy against SARS-CoV-2 and was recently approved for COVID-19 treatment. To improve antiviral potency of NHC, we developed a panel of NHC conjugates with lipophilic vectors and ester derivatives with amino- and carboxylic-acids. Most of the synthesized compounds had comparable or higher (2-20 times) antiviral activity than EIDD-2801, against different lineages of SARS-CoV-2, MERS-CoV, seasonal coronaviruses OC43 and 229E, as well as bovine coronavirus. For further studies, we assessed the most promising compound in terms of activity, simplicity and cost of synthesis - NHC conjugate with phenylpropionic acid (SN_9). SN_9 has shown high efficacy in prophylactic, therapeutic and transmission models of COVID-19 infection in hamsters. Importantly, SN_9 profoundly inhibited virus replication in the lower respiratory tract of hamsters and transgenic mice infected with the Omicron sublineages XBB.1.9.1, XBB.1.16 and EG.5.1.1. These data indicate that SN_9 represents a promising antiviral drug candidate for COVID-19 treatment, and NHC modification strategies deserve further investigation as an approach to develop prodrugs against various coronaviruses.


Assuntos
COVID-19 , Citidina/análogos & derivados , Hidroxilaminas , SARS-CoV-2 , Camundongos , Animais , Bovinos , Humanos , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19
5.
Biochim Biophys Acta Gen Subj ; 1868(5): 130582, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340879

RESUMO

BACKGROUND: Riboflavin (vitamin B2) is one of the most important water-soluble vitamins and a coenzyme involved in many biochemical processes. It has previously been shown that adjuvant therapy with flavin mononucleotide (a water-soluble form of riboflavin) correlates with normalization of clinically relevant immune markers in patients with COVID-19, but the mechanism of this effect remains unclear. Here, the antiviral and anti-inflammatory effects of riboflavin were investigated to elucidate the molecular mechanisms underlying the riboflavin-induced effects. METHODS: Riboflavin was evaluated for recombinant SARS-CoV-2 PLpro inhibition in an enzyme kinetic assay and for direct inhibition of SARS-CoV-2 replication in Vero E6 cells, as well as for anti-inflammatory activity in polysaccharide-induced inflammation models, including endothelial cells in vitro and acute lung inflammation in vivo. RESULTS: For the first time, the ability of riboflavin at high concentrations (above 50 µM) to inhibit SARS-CoV-2 PLpro protease in vitro was demonstrated; however, no inhibition of viral replication in Vero E6 cells in vitro was found. At the same time, riboflavin exerted a pronounced anti-inflammatory effect in the polysaccharide-induced inflammation model, both in vitro, preventing polysaccharide-induced cell death, and in vivo, reducing inflammatory markers (IL-1ß, IL-6, and TNF-α) and normalizing lung histology. CONCLUSIONS: It is concluded that riboflavin reveals anti-inflammatory rather than antiviral activity for SARS-CoV-2 infection. GENERAL SIGNIFICANCE: Riboflavin could be suggested as a promising compound for the therapy of inflammatory diseases of broad origin.


Assuntos
COVID-19 , Células Endoteliais , Humanos , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Antivirais/farmacologia , Riboflavina/farmacologia , Polissacarídeos , Água
6.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38256869

RESUMO

The spread of COVID-19 infection continues due to the emergence of multiple transmissible and immune-evasive variants of the SARS-CoV-2 virus. Although various vaccines have been developed and several drugs have been approved for the treatment of COVID-19, the development of new drugs to combat COVID-19 is still necessary. In this work, new 5'-O-ester derivatives of N4-hydroxycytidine based on carboxylic acids were developed and synthesized by Steglich esterification. The antiviral activity of the compounds was assessed in vitro-inhibiting the cytopathic effect of HCoV-229E, and three variants of SARS-CoV-2, on huh-7 and Vero E6 cells. Data have shown that most synthesized derivatives exhibit high activity against coronaviruses. In addition, the relationship between the chemical structure of the compounds and their antiviral effect has been established. The obtained results show that the most active compound was conjugate SN_22 based on 3-methyl phenoxyacetic acid. The results of this study indicate the potential advantage of the chemical strategies used to modify NHC as a promising avenue to be explored in vivo, which could lead to the development of drugs with improved pharmacological properties that potently inhibit SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA