Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioethics ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857488

RESUMO

Our society, in general, and health care, in particular, faces notable challenges due to the emergence of innovative digital technologies. The use of socially assistive robots in aged care is a particular digital application that provokes ethical reflection. The answers we give to the ethical questions associated with socially assistive robots are framed by ontological and anthropological considerations of what constitutes human beings and how the meaning of being human relates to how these robots are conceived. Religious beliefs and secular worldviews, each of which may participate fully in pluralist societies, have an important responsibility in this foundational debate, as anthropological theories can be inspired by religious and secular viewpoints. This article identifies seven anthropological considerations grounded in the synthesis of biblical scriptures, Roman Catholic documents, and recent research literature. We highlight the inspirational quality of these anthropological considerations when dealing with ethical issues regarding the development and use of socially assistive robots in aged care. With this contribution, we aim to foster a global and inclusive dialogue on digitalization in aged care that deeply challenges our basic understanding of what constitutes a human being and how this notion relates to machine artefacts.

2.
Adv Mater ; 36(27): e2313906, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583068

RESUMO

Advances in bioinspired and biohybrid robotics are enabling the creation of multifunctional systems able to explore complex unstructured environments. Inspired by Avena fruits, a biohybrid miniaturized autonomous machine (HybriBot) composed of a biomimetic biodegradable capsule as cargo delivery system and natural humidity-driven sister awns as biological motors is reported. Microcomputed tomography, molding via two-photon polymerization and casting of natural awns into biodegradable materials is employed to fabricate multiple HybriBots capable of exploring various soil and navigating soil irregularities, such as holes and cracks. These machines replicate the dispersal movements and biomechanical performances of natural fruits, achieving comparable capsule drag forces up to ≈0.38 N and awns torque up to ≈100 mN mm-1. They are functionalized with fertilizer and are successfully utilized to germinate selected diaspores. HybriBots function as self-dispersed systems with applications in reforestation and precision agriculture.


Assuntos
Agricultura , Avena , Frutas , Frutas/química , Avena/química , Robótica/instrumentação , Fertilizantes/análise , Solo/química , Materiais Biomiméticos/química
3.
Adv Sci (Weinh) ; 10(25): e2301033, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37460392

RESUMO

Magnetic systems based on permanent magnets are receiving growing attention, in particular for micro/millirobotics and biomedical applications. Their design landscape is expanded by the possibility to program magnetization, yet enabling analytical results, crucial for containing computational costs, are lacking. The dipole approximation is systematically used (and often strained), because exact and computationally robust solutions are to be unveiled even for common geometries such as cylindrical magnets, which are ubiquitously used in fundamental research and applications. In this study, exact solutions are disclosed for magnetic field and gradient of a cylindrical magnet with generic uniform magnetization, which can be robustly computed everywhere within and outside the magnet, and directly extend to magnets systems of arbitrary complexity. Based on them, exact and computationally robust solutions are unveiled for force and torque between coaxial magnets. The obtained analytical solutions overstep the dipole approximation, thus filling a long-standing gap, and offer strong computational gains versus numerical simulations (up to 106 , for the considered test-cases). Moreover, they bridge to a variety of applications, as illustrated through a compact magnets array that could be used to advance state-of-the-art biomedical tools, by creating, based on programmable magnetization patterns, circumferential and helical force traps for magnetoresponsive diagnostic/therapeutic agents.

4.
Biotechnol Bioeng ; 119(7): 1965-1979, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35383894

RESUMO

In the past decades, bone tissue engineering developed and exploited many typologies of bioreactors, which, besides providing proper culture conditions, aimed at integrating those bio-physical stimulations that cells experience in vivo, to promote osteogenic differentiation. Nevertheless, the highly challenging combination and deployment of many stimulation systems into a single bioreactor led to the generation of several unimodal bioreactors, investigating one or at mostly two of the required biophysical stimuli. These systems miss the physiological mimicry of bone cells environment, and often produced contrasting results, thus making the knowledge of bone mechanotransduction fragmented and often inconsistent. To overcome this issue, in this study we developed a perfusion and electroactive-vibrational reconfigurable stimulation bioreactor to investigate the differentiation of SaOS-2 bone-derived cells, hosting a piezoelectric nanocomposite membrane as cell culture substrate. This multimodal perfusion bioreactor is designed based on a numerical (finite element) model aimed at assessing the possibility to induce membrane nano-scaled vibrations (with ~12 nm amplitude at a frequency of 939 kHz) during perfusion (featuring 1.46 dyn cm-2 wall shear stress), large enough for inducing a physiologically-relevant electric output (in the order of 10 mV on average) on the membrane surface. This study explored the effects of different stimuli individually, enabling to switch on one stimulation at a time, and then to combine them to induce a faster bone matrix deposition rate. Biological results demonstrate that the multimodal configuration is the most effective in inducing SaOS-2 cell differentiation, leading to 20-fold higher collagen deposition compared to static cultures, and to 1.6- and 1.2-fold higher deposition than the perfused- or vibrated-only cultures. These promising results can provide tissue engineering scientists with a comprehensive and biomimetic stimulation platform for a better understanding of mechanotransduction phenomena beyond cells differentiation.


Assuntos
Osteogênese , Engenharia Tecidual , Reatores Biológicos , Osso e Ossos , Diferenciação Celular , Células Cultivadas , Mecanotransdução Celular , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Minim Invasive Ther Allied Technol ; 31(1): 42-49, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32255393

RESUMO

INTRODUCTION: During the last two decades, many surgical procedures have evolved from open surgery to minimally invasive surgery (MIS). This limited invasiveness has motivated the development of robotic assistance platforms to obtain better surgical outcomes. Nowadays, the da Vinci robot is a commercial tele-robotic platform widely used for different surgical applications. MATERIAL AND METHODS: In this work, the da Vinci Research Kit (dVRK), namely the research version of the da Vinci, is used to manipulate a novel microwave device in a teleoperation scenario. The dVRK provides an open source platform, so that the novel microwave tool, dedicated to prevention bleeding during hepatic resection surgery, is mechanically integrated on the slave side, while the software interface is adapted in order to correctly control tool pose. Tool integration is validated through in-vitro and ex-vivo tests performed by expert surgeons, meanwhile the coagulative efficacy of the developed tool in a perfused liver model was proved in in-vivo tests. RESULTS AND CONCLUSIONS: An innovative microwave tool for liver robotic resection has been realized and integrated into a surgical robot. The tool can be easily operated through the dVRK without limiting the intuitive and friendly use, and thus easily reaching the hemostasis of vessels.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Fígado/cirurgia , Micro-Ondas , Procedimentos Cirúrgicos Minimamente Invasivos
6.
Adv Sci (Weinh) ; 8(15): e2100418, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34075732

RESUMO

A chromogenically reversible, mechanochromic pressure sensor is integrated into a mininvasive surgical grasper compatible with the da Vinci robotic surgical system. The sensorized effector, also featuring two soft-material jaws, encompasses a mechanochromic polymeric inset doped with functionalized spiropyran (SP) molecule, designed to activate mechanochromism at a chosen pressure and providing a reversible color change. Considering such tools are systematically in the visual field of the operator during surgery, color change of the mechanochromic effector can help avoid tissue damage. No electronics is required to control the devised visual feedback. SP-doping of polydimethylsiloxane (2.5:1 prepolymer/curing agent weight ratio) permits to modulate the mechanochromic activation pressure, with lower values around 1.17 MPa for a 2% wt. SP concentration, leading to a shorter chromogenic recovery time of 150 s at room temperature (25 °C) under green light illumination. Nearly three-times shorter recovery time is observed at body temperature (37 °C). To the best of knowledge, this study provides the first demonstration of mechanochromic materials in surgery, in particular to sensorize unpowered surgical effectors, by avoiding dramatic increases in tool complexity due to additional electronics, thus fostering their application. The proposed sensing strategy can be extended to further tools and scopes.


Assuntos
Desenho de Equipamento/métodos , Retroalimentação Sensorial , Procedimentos Cirúrgicos Robóticos/métodos , Percepção Visual , Cor , Interface Usuário-Computador
7.
IEEE Trans Biomed Eng ; 68(1): 56-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32746010

RESUMO

OBJECTIVE: Surgical graspers must be safe, not to damage tissue, and effective, to establish a stable contact for operation. For conventional rigid graspers, these requirements are conflicting and tissue damage is often induced. We thus proposed novel soft graspers, based on morphing jaws that increase contact area with clutching force. METHODS: We introduced two soft jaw concepts: DJ and CJ. They were designed (using analytical and numerical models) and prototyped (10 mm diameter, 10 mm span). Corresponding graspers were obtained by integrating the jaws into a conventional tool used in the dVRK surgical robotics platform. Morphing performance was experimentally characterized. Jaw-tissue interaction was quantitatively assessed through damage indicators obtained from ex vivo tests and histological analysis, also comparing DJ, CJ and dVRK rigid jaws. Soft graspers were demonstrated through ex vivo tests on dVRK. Ex vivo tests and related analysis were devised/performed with medical doctors. RESULTS: Design goal was achieved for both soft jaws: by morphing, contact area exceeded by 20-30% the maximum area allowed by encumbrance specifications to rigid jaws. Experimental characterization was in good agreement with model predictions (error ≈ 4%). Damage indicators showed differences amongst DJ, CJ and dVRK jaws (ANOVA p-value  =  0.0005): damage was one order of magnitude lower for soft graspers (each pairwise comparison was statistically significant). CONCLUSION: We proposed and demonstrated soft graspers potentially less harmful to tissue than conventional graspers. SIGNIFICANCE: Beyond minimally invasive surgery, the proposed concepts and design methodology can foster the development of graspers for soft robotics.


Assuntos
Procedimentos Cirúrgicos Minimamente Invasivos , Robótica , Desenho de Equipamento
8.
Sci Rep ; 10(1): 16341, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004968

RESUMO

A real-time tool to monitor the electrospinning process is fundamental to improve the reproducibility and quality of the resulting nanofibers. Hereby, a novel optical system integrated through coaxial needle is proposed as monitoring tool for electrospinning process. An optical fiber (OF) is inserted in the inner needle, while the external needle is used to feed the polymeric solution (PEO/water) drawn by the process. The light exiting the OF passes through the solution drop at the needle tip and gets coupled to the electrospun fiber (EF) while travelling towards the nanofibers collector. Numerical and analytical models were developed to assess the feasibility and robustness of the light coupling. Experimental tests demonstrated the influence of the process parameters on the EF waveguide properties, in terms of waveguide length (L), and on the nanofibers diameter distribution, in terms of mean [Formula: see text] and normalized standard deviation [Formula: see text]. Data analysis reveals good correlation between L and [Formula: see text] (respectively maximum correlation coefficients of [Formula: see text] = 0.88 and [Formula: see text] = 0.84), demonstrating the potential for effectively using the proposed light-assisted technology as real-time visual feedback on the process. The developed system can provide an interesting option for monitoring industrial electrospinning systems using multi- or moving needles with impact in the scaling-up of innovative nanofibers for soft systems.

9.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114052

RESUMO

The lack of efficient targeting strategies poses significant limitations on the effectiveness of chemotherapeutic treatments. This issue also affects drug-loaded nanocarriers, reducing nanoparticles cancer cell uptake. We report on the fabrication and in vitro characterization of doxorubicin-loaded magnetic liposomes for localized treatment of liver malignancies. Colloidal stability, superparamagnetic behavior and efficient drug loading of our formulation were demonstrated. The application of an external magnetic field guaranteed enhanced nanocarriers cell uptake under cell medium flow in correspondence of a specific area, as we reported through in vitro investigation. A numerical model was used to validate experimental data of magnetic targeting, proving the possibility of accurately describing the targeting strategy and predict liposomes accumulation under different environmental conditions. Finally, in vitro studies on HepG2 cancer cells confirmed the cytotoxicity of drug-loaded magnetic liposomes, with cell viability reduction of about 50% and 80% after 24 h and 72 h of incubation, respectively. Conversely, plain nanocarriers showed no anti-proliferative effects, confirming the formulation safety. Overall, these results demonstrated significant targeting efficiency and anticancer activity of our nanocarriers and superparamagnetic nanoparticles entrapment could envision the theranostic potential of the formulation. The proposed magnetic targeting study could represent a valid tool for pre-clinical investigation regarding the effectiveness of magnetic drug targeting.

10.
IEEE Trans Biomed Eng ; 67(12): 3452-3463, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32746002

RESUMO

OBJECTIVE: Intraoperative palpation is a surgical gesture jeopardized by the lack of haptic feedback which affects robotic minimally invasive surgery. Restoring the force reflection in teleoperated systems may improve both surgeons' performance and procedures' outcome. METHODS: A force-based sensing approach was developed, based on a cable-driven parallel manipulator with anticipated seamless and low-cost integration capabilities in teleoperated robotic surgery. No force sensor on the end-effector is used, but tissue probing forces are estimated from measured cable tensions. A user study involving surgical trainees (n = 22) was conducted to experimentally evaluate the platform in two palpation-based test-cases on silicone phantoms. Two modalities were compared: visual feedback alone and both visual + haptic feedbacks available at the master site. RESULTS: Surgical trainees' preference for the modality providing both visual and haptic feedback is corroborated by both quantitative and qualitative metrics. Hard nodules detection sensitivity improves (94.35 ± 9.1% vs 76.09 ± 19.15% for visual feedback alone), while also exerting smaller forces (4.13 ± 1.02 N vs 4.82 ± 0.81 N for visual feedback alone) on the phantom tissues. At the same time, the subjective perceived workload decreases. CONCLUSION: Tissue-probe contact forces are estimated in a low cost and unique way, without the need of force sensors on the end-effector. Haptics demonstrated an improvement in the tumor detection rate, a reduction of the probing forces, and a decrease in the perceived workload for the trainees. SIGNIFICANCE: Relevant benefits are demonstrated from the usage of combined cable-driven parallel manipulators and haptics during robotic minimally invasive procedures. The translation of robotic intraoperative palpation to clinical practice could improve the detection and dissection of cancer nodules.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Retroalimentação , Procedimentos Cirúrgicos Minimamente Invasivos , Palpação
11.
ACS Appl Mater Interfaces ; 12(32): 35782-35798, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32693584

RESUMO

Oxidative stress represents a common issue in most neurological diseases, causing severe impairments of neuronal cell physiological activity that ultimately lead to neuron loss of function and cellular death. In this work, lipid-coated polydopamine nanoparticles (L-PDNPs) are proposed both as antioxidant and neuroprotective agents, and as a photothermal conversion platform able to stimulate neuronal activity. L-PDNPs showed the ability to counteract reactive oxygen species (ROS) accumulation in differentiated SH-SY5Y, prevented mitochondrial ROS-induced dysfunctions and stimulated neurite outgrowth. Moreover, for the first time in the literature, the photothermal conversion capacity of L-PDNPs was used to increase the intracellular temperature of neuron-like cells through near-infrared (NIR) laser stimulation, and this phenomenon was thoroughly investigated using a fluorescent temperature-sensitive dye and modeled from a mathematical point of view. It was also demonstrated that the increment in temperature caused by the NIR stimulation of L-PDNPs was able to produce a Ca2+ influx in differentiated SH-SY5Y, being, to the best of our knowledge, the first example of organic nanostructures used in such an approach. This work could pave the way to new and exciting applications of polydopamine-based and of other NIR-responsive antioxidant nanomaterials in neuronal research.


Assuntos
Antioxidantes/química , Indóis/química , Nanopartículas/química , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/química , Polímeros/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Hipertermia Induzida , Indóis/farmacologia , Raios Infravermelhos , Lasers , Modelos Biológicos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Terapia Fototérmica , Polímeros/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Temperatura
12.
Soft Robot ; 7(4): 409-420, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31880499

RESUMO

This study addresses a design and calibration methodology based on numerical finite element method (FEM) modeling for the development of a soft tactile sensor able to simultaneously solve the magnitude and the application location of a normal load exerted onto its surface. The sensor entails the integration of a Bragg grating fiber optic sensor in a Dragon Skin 10 polymer brick (110 mm length, 24 mm width). The soft polymer mediates the transmission of the applied load to the buried fiber Bragg gratings (FBGs), and we also investigated the effect of sensor thickness on receptive field and sensitivity, both with the developed model and experimentally. Force-controlled indentations of the sensor (up to 2.5 N) were carried out through a cylindrical probe applied along the direction of the optical fiber (over an ∼90 mm span in length). A finite element model of the sensor was built and experimentally validated for 1 and 6 mm thicknesses of the soft polymeric encapsulation material, considering that the latter thickness resulted from numerical simulations as leading to optimal cross talk and sensitivity, given the chosen soft material. The FEM model was also used to train a neural network so as to obtain the inverse sensor function. Using four FBG transducers embedded in the 6-mm-thick soft polymer, the proposed machine learning approach managed to accurately detect both load magnitude (R = 0.97) and location (R = 0.99) over the whole experimental range. The proposed system could be used for developing tactile sensors that can be effectively used for a broad range of applications.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Tecnologia de Fibra Óptica/métodos , Aprendizado de Máquina , Fenômenos Mecânicos , Polímeros
13.
Int J Med Robot ; 16(2): e2072, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31876096

RESUMO

BACKGROUND: Hollow, bendable manipulators can advance implant delivery in minimally invasive surgery, by circumventing the drawbacks of straight-line delivery and fostering single-port approaches. Variable stiffness manipulators are sought to be safe and effective. METHODS: We designed and experimentally assessed a cable-driven articulated/continuum manipulator, devised for cardiac valve delivery. Positioning and stiffening were teleoperated, based on cable shortening. Stiffening was parameterized by using the leading tension (LT, ie, tension of the cables driving bending). We assessed positioning (repeatability/reversibility along eight/two bending directions) and stiffening (eight bent configurations). RESULTS: We achieved good repeatability and reversibility (mean errors <1% and 1.5%, respectively, of the workspace characteristic length). Stiffening was effective (up to 9-fold increase, depending on pose). Stiffening was linearly correlated (R2 = 0.92) with LT for all the considered configurations. CONCLUSION: We accurately positioned and effectively stiffened the manipulator in several bent configurations. The proposed stiffness modulation strategy can be extended to other manipulators.


Assuntos
Valva Aórtica/cirurgia , Implante de Prótese de Valva Cardíaca/métodos , Próteses Valvulares Cardíacas , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Desenho de Equipamento , Implante de Prótese de Valva Cardíaca/instrumentação , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Reprodutibilidade dos Testes
15.
Adv Healthc Mater ; 8(18): e1900612, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31389193

RESUMO

In this study, hybrid nanocubes composed of magnetite (Fe3 O4 ) and manganese dioxide (MnO2 ), coated with U-251 MG cell-derived membranes (CM-NCubes) are synthesized. The CM-NCubes demonstrate a concentration-dependent oxygen generation (up to 15%), and, for the first time in the literature, an intracellular increase of temperature (6 °C) due to the exothermic scavenging reaction of hydrogen peroxide (H2 O2 ) is showed. Internalization studies demonstrate that the CM-NCubes are internalized much faster and at a higher extent by the homotypic U-251 MG cell line compared to other cerebral cell lines. The ability of the CM-NCubes to cross an in vitro model of the blood-brain barrier is also assessed. The CM-NCubes show the ability to respond to a static magnet and to accumulate in cells even under flowing conditions. Moreover, it is demonstrated that 500 µg mL-1 of sorafenib-loaded or unloaded CM-NCubes are able to induce cell death by apoptosis in U-251 MG spheroids that are used as a tumor model, after their exposure to an alternating magnetic field (AMF). Finally, it is shown that the combination of sorafenib and AMF induces a higher enzymatic activity of caspase 3 and caspase 9, probably due to an increment in reactive oxygen species by means of hyperthermia.


Assuntos
Membrana Celular/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/terapia , Nanopartículas de Magnetita/química , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Nanomedicina Teranóstica , Apoptose , Barreira Hematoencefálica/patologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Endocitose , Fluorescência , Glioblastoma/patologia , Humanos , Hipertermia Induzida , Nanopartículas de Magnetita/ultraestrutura , Oxigênio/metabolismo , Coroa de Proteína
16.
Front Neurorobot ; 13: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057387

RESUMO

Tactile sensing is an instrumental modality of robotic manipulation, as it provides information that is not accessible via remote sensors such as cameras or lidars. Touch is particularly crucial in unstructured environments, where the robot's internal representation of manipulated objects is uncertain. In this study we present the sensorization of an existing artificial hand, with the aim to achieve fine control of robotic limbs and perception of object's physical properties. Tactile feedback is conveyed by means of a soft sensor integrated at the fingertip of a robotic hand. The sensor consists of an optical fiber, housing Fiber Bragg Gratings (FBGs) transducers, embedded into a soft polymeric material integrated on a rigid hand. Through several tasks involving grasps of different objects in various conditions, the ability of the system to acquire information is assessed. Results show that a classifier based on the sensor outputs of the robotic hand is capable of accurately detecting both size and rigidity of the operated objects (99.36 and 100% accuracy, respectively). Furthermore, the outputs provide evidence of the ability to grab fragile objects without breakage or slippage e and to perform dynamic manipulative tasks, that involve the adaptation of fingers position based on the grasped objects' condition.

17.
Int J Med Robot ; 15(4): e1999, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30970387

RESUMO

BACKGROUND: It was suggested that the lack of haptic feedback, formerly considered a limitation for the da Vinci robotic system, does not affect robotic surgeons because of training and compensation based on visual feedback. However, conclusive studies are still missing, and the interest in force reflection is rising again. METHODS: We integrated a seven-DoF master into the da Vinci Research Kit. We designed tissue grasping, palpation, and incision tasks with robotic surgeons, to be performed by three groups of users (expert surgeons, medical residents, and nonsurgeons, five users/group), either with or without haptic feedback. Task-specific quantitative metrics and a questionnaire were used for assessment. RESULTS: Force reflection made a statistically significant difference for both palpation (improved inclusion detection rate) and incision (decreased tissue damage). CONCLUSIONS: Haptic feedback can improve key surgical outcomes for tasks requiring a pronounced cognitive burden for the surgeon, to be possibly negotiated with longer completion times.


Assuntos
Força da Mão , Procedimentos Cirúrgicos Robóticos/educação , Procedimentos Cirúrgicos Robóticos/instrumentação , Cirurgiões , Adulto , Desenho de Equipamento , Retroalimentação Sensorial , Feminino , Humanos , Masculino , Palpação , Software , Ferida Cirúrgica , Inquéritos e Questionários , Tato
18.
Nat Commun ; 10(1): 344, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664648

RESUMO

Soft robots hold promise for well-matched interactions with delicate objects, humans and unstructured environments owing to their intrinsic material compliance. Movement and stiffness modulation, which is challenging yet needed for an effective demonstration, can be devised by drawing inspiration from plants. Plants use a coordinated and reversible modulation of intracellular turgor (pressure) to tune their stiffness and achieve macroscopic movements. Plant-inspired osmotic actuation was recently proposed, yet reversibility is still an open issue hampering its implementation, also in soft robotics. Here we show a reversible osmotic actuation strategy based on the electrosorption of ions on flexible porous carbon electrodes driven at low input voltages (1.3 V). We demonstrate reversible stiffening (~5-fold increase) and actuation (~500 deg rotation) of a tendril-like soft robot (diameter ~1 mm). Our approach highlights the potential of plant-inspired technologies for developing soft robots based on biocompatible materials and safe voltages making them appealing for prospective applications.

19.
Nanomedicine (Lond) ; 14(6): 727-752, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30574827

RESUMO

AIM: Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency. MATERIALS & METHODS: Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells. RESULTS: Nut-Mag-SLNs showed good colloidal stability, the ability to cross an in vitro blood-brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug. CONCLUSION: Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme.


Assuntos
Portadores de Fármacos/química , Glioblastoma/tratamento farmacológico , Imidazóis/química , Lipídeos/química , Nanopartículas de Magnetita/química , Piperazinas/química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Transporte Biológico , Barreira Hematoencefálica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Imidazóis/uso terapêutico , Cinética , Tamanho da Partícula , Piperazinas/uso terapêutico , Propriedades de Superfície
20.
Adv Sci (Weinh) ; 5(9): 1800807, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250809

RESUMO

The clinical adoption of nanoscale agents for targeted therapy is still hampered by the quest for a balance between therapy efficacy and side effects on healthy tissues, due to nanoparticle biodistribution and undesired drug accumulation issues. Here, an intravascular catheter able to efficiently retrieve from the bloodstream magnetic nanocarriers not contributing to therapy, thus minimizing their uncontrollable dispersion and consequently attenuating possible side effects, is proposed. The device consists of a miniature module, based on 27 permanent magnets arranged in two coaxial series, integrated into a clinically used 12 French catheter. This device can capture ≈94% and 78% of the unused agents when using as carriers 500 and 250 nm nominal diameter superparamagnetic iron oxide nanoparticles, respectively. This approach paves the way to the exploitation of new "high-risk/high-gain" drug formulations and supports the development of novel therapeutic strategies based on magnetic hyperthermia or magnetic microrobots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...