Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 284: 127738, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38692035

RESUMO

This study aimed to (i) investigate the potential for enhanced phytoremediation to remove contaminants from soil historically co-contaminated with petroleum hydrocarbons (PHs) and heavy metals (HMs) and (ii) analyze the expression of crucial bacterial genes and whole metatranscriptomics profiles for better understanding of soil processes during applied treatment. Phytoremediation was performed using Zea mays and supported by the Pseudomonas qingdaonensis ZCR6 strain and a natural biofertilizer: meat and bone meal (MBM). In previous investigations, mechanisms supporting plant growth and PH degradation were described in the ZCR6 strain. Here, ZCR6 survived in the soil throughout the experiment, but the efficacy of PH removal from all soils fertilized with MBM reached 32 % regardless of the bacterial inoculation. All experimental groups contained 2 % (w/w) MBM. The toxic effect of this amendment on plants was detected 30 days after germination, irrespective of ZCR6 inoculation. Among the 17 genes tested using the qPCR method, only expression of the acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid deaminase, and the CYP153 gene, encoding cytochrome P450-type alkane hydroxylase, was detected in soils. Metatranscriptomic analysis of soils indicated increased expression of methane particulated ammonia monooxygenase subunit A (pmoA-amoA) by Nitrosomonadales bacteria in all soils enriched with MBM compared to the non-fertilized control. We suggest that the addition of 2 % (w/w) MBM caused the toxic effect on plants via the rapid release of ammonia, and this led to high pmoA-amoA expression. In parallel, due to its wide substrate specificity, enhanced bacterial hydrocarbon removal in MBM-treated soils was observed. The metatranscriptomic results indicate that MBM application should be considered to improve bioremediation of soils polluted with PHs rather than phytoremediation. However, lower concentrations of MBM could be considered for phytoremediation enhancement. From a broader perspective, these results indicated the superior capability of metatranscriptomics to investigate the microbial mechanisms driving various bioremediation techniques.

2.
Environ Int ; 187: 108705, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38688234

RESUMO

According to the hygiene and biodiversity hypotheses, frequent exposure to environmental microbiota, especially through soil contact, diversifies commensal microbiota, enhances immune modulation, and ultimately lowers the risk of immune-mediated diseases. Here we test the underlying assumption of the hygiene and biodiversity hypotheses by instructing volunteers to grow edible plants indoors during the winter season when natural exposure to environmental microbiota is low. The one-month randomized, placebo-controlled double-blind trial consisted of two treatments: participants received either microbially diverse growing medium or visually similar but microbially poor growing medium. Skin microbiota and a panel of seven immune markers were analyzed in the beginning of the trial and after one month. The diversity of five bacterial phyla (Bacteroidetes, Planctomycetes, Proteobacteria, Cyanobacteria, and Verrucomicrobia) and one class (Bacteroidia) increased on the skin of participants in the intervention group while no changes were observed in the placebo group. The number of nodes and edges in the co-occurrence networks of the skin bacteria increased on average three times more in the intervention group than in the placebo group. The plasma levels of the immunomodulatory cytokine interleukin 10 (IL-10) increased in the intervention group when compared with the placebo group. A similar trend was observed in the interleukin 17A (IL-17A) levels and in the IL-10:IL-17A ratios. Participants in both groups reported high satisfaction and adherence to the trial. The current study provides evidence in support of the core assumption of the hygiene and biodiversity hypotheses of immune-mediated diseases. Indoor urban gardening offers a meaningful and convenient approach for increasing year-round exposure to environmental microbiota, paving the way for other prophylactic practices that might help prevent immune-mediated diseases.

3.
Environ Int ; 185: 108545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447454

RESUMO

Over the last few years, the cumulative use of antibiotics in healthcare institutions, as well as the rearing of livestock and poultry, has resulted in the accumulation of antibiotic resistance genes (ARGs). This presents a substantial danger to human health worldwide. The characteristics of airborne ARGs, especially those transferred from outdoors to indoors, remains largely unexplored in neighborhoods, even though a majority of human population spends most of their time there. We investigated airborne ARGs and mobile genetic element (MGE, IntI1), plant communities, and airborne microbiota transferred indoors, as well as respiratory disease (RD) prevalence using a combination of metabarcode sequencing, real-time quantitative PCR and questionnaires in 72 neighborhoods in Shanghai. We hypothesized that (i) urbanization regulates ARGs abundance, (ii) the urbanization effect on ARGs varies seasonally, and (iii) land use types are associated with ARGs abundance. Supporting these hypotheses, during the warm season, the abundance of ARGs in peri-urban areas was higher than in urban areas. The abundance of ARGs was also affected by the surrounding land use and plant communities: an increase in the proportion of gray infrastructure (e.g., residential area) around neighborhoods can lead to an increase in some ARGs (mecA, qnrA, ermB and mexD). Additionally, there were variations observed in the relationship between ARGs and bacterial genera in different seasons. Specifically, Stenotrophomonas and Campylobacter were positively correlated with vanA during warm seasons, whereas Pseudomonas, Bacteroides, Treponema and Stenotrophomonas positively correlated with tetX in the cold season. Interstingly, a noteworthy positive correlation was observed between the abundance of vanA and the occurrence of both rhinitis and rhinoconjunctivitis. Taken together, our study underlines the importance of urbanization and season in controlling the indoor transfer of airborne ARGs. Furthermore, we also highlight the augmentation of green-blue infrastructure in urban environments has the potential to mitigate an excess of ARGs.


Assuntos
Genes Bacterianos , Urbanização , Humanos , Antibacterianos/farmacologia , China , Resistência Microbiana a Medicamentos/genética
4.
Am J Bot ; 111(2): e16285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353923

RESUMO

PREMISE: Plants grown at high densities show increased tolerance to heavy metals for reasons that are not clear. A potential explanation is the release of citrate by plant roots, which binds metals and prevents uptake. Thus, pooled exudates at high plant densities might increase tolerance. We tested this exclusion facilitation hypothesis using mutants of Arabidopsis thaliana defective in citrate exudation. METHODS: Wild type Arabidopsis and two allelic mutants for the Ferric Reductase Defective 3 (FRD3) gene were grown at four densities and watered with copper sulfate at four concentrations. Plants were harvested before bolting and dried. Shoot biomass was measured, and shoot material and soil were digested in nitric acid. Copper contents were determined by atomic absorption. RESULTS: In the highest-copper treatment, density-dependent reduction in toxicity was observed in the wild type but not in FRD3 mutants. For both mutants, copper concentrations per gram biomass were up to seven times higher than for wild type plants, depending on density and copper treatment. In all genotypes, total copper accumulation was greater at higher plant densities. Plant size variation increased with density and copper treatment because of heterogeneous distribution of copper throughout the soil. CONCLUSIONS: These results support the hypothesis that citrate exudation is responsible for density-dependent reductions in toxicity of metals. Density-dependent copper uptake and growth in contaminated soils underscores the importance of density in ecotoxicological testing. In soils with a heterogeneous distribution of contaminants, competition for nontoxic soil regions may drive size hierarchies and determine competitive outcomes.


Assuntos
Arabidopsis , Poluentes do Solo , Cobre/toxicidade , Cobre/análise , Cobre/metabolismo , Solo , Plantas/metabolismo , Citratos/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Raízes de Plantas , Biodegradação Ambiental
5.
Front Microbiol ; 14: 1258148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029190

RESUMO

Bioremediation by in situ biostimulation is an attractive alternative to excavation of contaminated soil. Many in situ remediation methods have been tested with some success; however, due to highly variable results in realistic field conditions, they have not been implemented as widely as they might deserve. To ensure success, methods should be validated under site-analogous conditions before full scale use, which requires expertise and local knowledge by the implementers. The focus here is on indigenous microbial degraders and evaluation of their performance. Identifying and removing biodegradation bottlenecks for degradation of organic pollutants is essential. Limiting factors commonly include: lack of oxygen or alternative electron acceptors, low temperature, and lack of essential nutrients. Additional factors: the bioavailability of the contaminating compound, pH, distribution of the contaminant, and soil structure and moisture, and in some cases, lack of degradation potential which may be amended with bioaugmentation. Methods to remove these bottlenecks are discussed. Implementers should also be prepared to combine methods or use them in sequence. Chemical/physical means may be used to enhance biostimulation. The review also suggests tools for assessing sustainability, life cycle assessment, and risk assessment. To help entrepreneurs, decision makers, and methods developers in the future, we suggest founding a database for otherwise seldom reported unsuccessful interventions, as well as the potential for artificial intelligence (AI) to assist in site evaluation and decision-making.

6.
BMC Immunol ; 24(1): 29, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689649

RESUMO

BACKGROUND: . Lack of exposure to the natural microbial diversity of the environment has been linked to dysregulation of the immune system and numerous noncommunicable diseases, such as allergies and autoimmune disorders. Our previous studies suggest that contact with soil material, rich in naturally occurring microbes, could have a beneficial immunoregulatory impact on the immune system in mice and humans. However, differences in the immunomodulatory properties of autoclaved, sterile soil material and non-autoclaved, live soil material have not been compared earlier. RESULTS: . In this study, we exposed C57BL/6 mice to autoclaved and live soil powders that had the same rich microbiota before autoclaving. We studied the effect of the soil powders on the mouse immune system by analyzing different immune cell populations, gene expression in the gut, mesenteric lymph nodes and lung, and serum cytokines. Both autoclaved and live soil exposure were associated with changes in the immune system. The exposure to autoclaved soil resulted in higher levels of Rorγt, Inos and Foxp3 expression in the colon. The exposure to live soil was associated with elevated IFN-γ concentration in the serum. In the mesenteric lymph node, exposure to live soil reduced Gata3 and Foxp3 expression, increased the percentage of CD8 + T cells and the expression of activation marker CD80 in XCR1+SIRPα- migratory conventional dendritic cell 1 subset. CONCLUSIONS: . Our results indicate that exposure to the live and autoclaved soil powders is not toxic for mice. Exposure to live soil powder slightly skews the immune system towards type 1 direction which might be beneficial for inhibiting type 2-related inflammation. Further studies are warranted to quantify the impact of this exposure in experimental type 2 inflammation.


Assuntos
Células Dendríticas , Inflamação , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Pós , Fatores de Transcrição Forkhead
7.
Data Brief ; 47: 109003, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36915639

RESUMO

The metagenomic data presented in this article are related to the published research of "A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children" This database contains 16S ribosomal RNA (rRNA) metagenomics of sandbox sand and skin and gut microbiota of children in the intervention and placebo daycares. In intervention daycares, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil. In placebo daycares, children were exposed to visually similar as in intervention daycares, but microbially poor sand colored with peat. Sand, skin and gut metagenomics were analyzed at baseline and after 14 and 28 days of intervention by high throughput sequencing of bacterial 16S rRNA gene on the Illumina MiSeq platform. This dataset shows how skin bacterial community composition, including classes Gammaproteobacteria and Bacilli, changed, and how the relative abundance of over 30 bacterial genera shifted on the skin of children in the intervention treatment, while no shifts occurred in the placebo group.

9.
Microbiol Res ; 270: 127343, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841130

RESUMO

Soil quality and microbial diversity are essential to the health of ecosystems. However, it is unclear how the use of eco-friendly natural additives can improve the quality and microbial diversity of contaminated soils. Herein, we used high-throughput 16 S rDNA amplicon Illumina sequencing to evaluate the stimulation and development of microbial diversity and concomitant bioremediation in hydrocarbon (HC) and heavy metal (HM)-rich waste disposal site soil when treated with meat and bone meal (MBM), cyclodextrin (Cdx), and MBM and cyclodextrin mixture (Cdx MBM) over a period of 3 months. Results showed that natural additive treatments significantly increased the soil bacterial diversity (higher Shannon index, Simpson index and evenness) in a time-dependent manner, with Cdx eliciting the greatest enhancement. The two additives influenced the bacterial community succession patterns differently. MBM, while it enhanced the enrichment of specific genera Chitinophaga and Terrimonas, did not significantly alter the total bacterial community. In contrast, Cdx or Cdx MBM promoted a profound change of the bacteria community over time, with the enrichment of the genera Parvibaculum, Arenimonas and unclassified Actinobacteria. These results provide evidence on the involvement of the two natural additives in coupling HC and HM bioremediation and bacterial community perturbations, and thus illustrates their potential application in ecologically sound bioremediation technologies for contaminated soils.


Assuntos
Metais Pesados , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Solo , Microbiologia do Solo , Bactérias/genética , Hidrocarbonetos , Bacteroidetes , Metais Pesados/análise
10.
Microb Ecol ; 86(2): 973-984, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36542126

RESUMO

Vegetables and fruits are a crucial part of the planetary health diet, directly affecting human health and the gut microbiome. The objective of our study was to understand the variability of the fruit (apple and blueberry) microbiome in the frame of the exposome concept. The study covered two fruit-bearing woody species, apple and blueberry, two countries of origin (Austria and Finland), and two fruit production methods (naturally grown and horticultural). Microbial abundance, diversity, and community structures were significantly different for apples and blueberries and strongly influenced by the growing system (naturally grown or horticultural) and country of origin (Austria or Finland). Our results indicated that bacterial communities are more responsive towards these factors than fungal communities. We found that fruits grown in the wild and within home gardens generally carry a higher microbial diversity, while commercial horticulture homogenized the microbiome independent of the country of origin. This can be explained by horticultural management, including pesticide use and post-harvest treatments. Specific taxonomic indicators were identified for each group, i.e., for horticultural apples: Pseudomonas, Ralstonia, and Stenotrophomonas. Interestingly, Ralstonia was also found to be enriched in horticultural blueberries in comparison to such that were home and wildly grown. Our study showed that the origin of fruits can strongly influence the diversity and composition of their microbiome, which means that we are exposed to different microorganisms by eating fruits from different origins. Thus, the fruit microbiome needs to be considered an important but relatively unexplored external exposomic factor.


Assuntos
Mirtilos Azuis (Planta) , Expossoma , Malus , Microbiota , Humanos , Frutas/microbiologia , Mirtilos Azuis (Planta)/química
11.
Front Microbiol ; 13: 953783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204619

RESUMO

Meat and bone meal (MBM), as slaughterhouse waste, is a potential biostimulating agent, but its efficiency and reliability in composting are largely unknown. To access the MBM application to the composting process of asparagus straw rice, we followed the composting process for 60 days in 220-L composters and another 180 days in 20-L buckets in treatments applied with MBM or urea. The microbial succession was investigated by high-throughput sequencing. Compared with urea treatments, MBM addition stabilized pH and extended the thermophilic phase for 7 days. The germination index of MBM treatments was 24.76% higher than that of urea treatments. MBM also promoted higher microbial diversity and shifted community compositions. Organic matter and pH were the most significant factors that influence the bacterial and fungal community structure. At the genus level, MBM enriched relative abundances of organic matter-degrading bacteria (Alterococcus) and lignocellulose-degrading fungi (Trichoderma), as well as lignocellulolytic enzyme activities. Notably, MBM addition decreased sum abundances of plant pathogenic fungi of Phaeoacremonium, Acremonium, and Geosmithia from 17.27 to 0.11%. This study demonstrated the potential of MBM as an effective additive in asparagus straw composting, thus providing insights into the development of new industrial aerobic fermentation.

12.
Food Microbiol ; 108: 104103, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088117

RESUMO

During the early life, introduction to external exposures such as consumption of solid foods contribute to the development of the gut microbiota. Among solid foods, fruit and vegetables are normally consumed during early childhood making them key components of a healthy human diet. The role of the indigenous microbiota of fruits as a source for beneficial gut microbes, especially during food processing, is largely unknown. Therefore, we investigated the apple fruit microbiota before and after processing using functional assays, advanced microscopic as well as sequencing technologies. Apple fruits carried a high absolute bacterial abundance (1.8 × 105 16S rRNA copies per g of apple pulp) and diversity of bacteria (Shannon diversity index = 2.5). We found that heat and mechanical treatment substantially affected the fruit's microbiota following a declining gradient of absolute bacterial abundance and bacterial diversity from shredded > boiled > pureed > preserved > dried apples. Betaproteobacteriales and Enterobacteriales were the two dominant bacterial orders (51.3%, 20.4% of the total 16S rRNA sequence reads) in the unprocessed apple. Boiling and air drying reduced the microbial load, but an unexpected, substantial fraction of 1/3 of the microbiota survived. Boiling and air drying shifted the microbiota leading to a relative increase in low abundant taxa such as Pseudomonas and Ralstonia (>2 log2 fold change), while others such as Bacillus decreased. Bacillus spp., frequently found in raw fruits, were shown to have specific traits, i.e. antagonist activity against opportunistic pathogens, biosurfactant production, and bile salt resistance indicating a probiotic potential. Our findings provide novel insights into food microbial changes during processing and demonstrate that food microbiome studies need a combined methodological approach. Food inhabiting microbes, currently considered being a risk factor for food safety, are a potential resource for the infant gut microbiome.


Assuntos
Microbioma Gastrointestinal , Malus , Microbiota , Bactérias/genética , Pré-Escolar , Frutas , Microbioma Gastrointestinal/genética , Humanos , RNA Ribossômico 16S/genética
13.
Data Brief ; 43: 108487, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35959162

RESUMO

Meat and Bone Meal (MBM) and ß-cyclodextrin were added to a soil sample co-contaminated by hydrocarbons (diesel fraction C10-C21 and lubricant oil fraction C22-C40) and heavy metals to promote soil remediation. The pilot study was conducted in the laboratory, maintaining optimal conditions (i.e., temperature, pH, water content, soil aeration) to facilitate hydrocarbon biodegradation. Two different experimental tests were prepared: one for the analysis of hydrocarbons in soil, the other to monitor the dynamics of some elements of interest. For the first test, the two hydrocarbon fractions in the soil were quantified separately by GC-FID, following the ISO 16703:2004(E) standard protocol. Sampling and analysis were done every two weeks, for three consecutive months. For the second test (dynamics of certain elements in the soil), soil and leachate samples were analyzed by ICP-MS after appropriate pretreatment steps.

14.
Plants (Basel) ; 11(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956448

RESUMO

This study was conducted to assess the survival rates, growth, and chlorophyll fluorescence (Fv/Fm) of four hybrid aspen (14, 191, 27, 291) and two European aspen (R3 and R4) clones cultivated in creosote- and diesel oil-contaminated soil treatments under three different plant densities: one plant per pot (low density), two plants per pot (medium density), and six plants per pot (high density) over a period of two years and three months. Evaluating the survival, growth, and Fv/Fm values of different plants is a prerequisite for phytoremediation to remediate polluted soils for ecological restoration and soil health. The results revealed that contaminated soils affected all plants' survival rates and growth. However, plants grown in the creosote-contaminated soil displayed a 99% survival rate, whereas plants cultivated in the diesel-contaminated soil showed a 22−59% survival rate. Low plant density resulted in a higher survival rate and growth than in the other two density treatments. In contrast, the medium- and high-density treatments did not affect the plant survival rate and growth to a greater extent, particularly in contaminated soil treatments. The effects of clonal variation on the survival rate, growth, and Fv/Fm values were evident in all treatments. The results suggested that hybrid aspen clones 14 and 291, and European aspen clone R3 were suitable candidates for the phytoremediation experiment, as they demonstrated reasonable survival rates, growth, and Fv/Fm values across all treatments. A superior survival rate for clone 291, height and diameter growth, and stem dry biomass production for clone 14 were observed in all soil treatments. Overall, a reasonable survival rate (~75%) and Fv/Fm value (>0.75) for all plants in all treatments, indicating European aspen and hybrid aspen have considerable potential for phytoremediation experiments. As the experiment was set up for a limited period, this study deserves further research to verify the growth potential of different hybrid aspen and European aspen clones in different soil and density treatment for the effective phytoremediation process to remediate the contaminated soil.

15.
Ecotoxicol Environ Saf ; 242: 113900, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930838

RESUMO

BACKGROUND: According to the biodiversity hypothesis of immune-mediated diseases, lack of microbiological diversity in the everyday living environment is a core reason for dysregulation of immune tolerance and - eventually - the epidemic of immune-mediated diseases in western urban populations. Despite years of intense research, the hypothesis was never tested in a double-blinded and placebo-controlled intervention trial. OBJECTIVE: We aimed to perform the first placebo-controlled double-blinded test that investigates the effect of biodiversity on immune tolerance. METHODS: In the intervention group, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil, or in the placebo group, visually similar, but microbially poor sand colored with peat (13 participants per treatment group). Children played twice a day for 20 min in the sandbox for 14 days. Sand, skin and gut bacterial, and blood samples were taken at baseline and after 14 days. Bacterial changes were followed for 28 days. Sand, skin and gut metagenome was determined by high throughput sequencing of bacterial 16 S rRNA gene. Cytokines were measured from plasma and the frequency of blood regulatory T cells was defined as a percentage of total CD3 +CD4 + T cells. RESULTS: Bacterial richness (P < 0.001) and diversity (P < 0.05) were higher in the intervention than placebo sand. Skin bacterial community, including Gammaproteobacteria, shifted only in the intervention treatment to resemble the bacterial community in the enriched sand (P < 0.01). Mean change in plasma interleukin-10 (IL-10) concentration and IL-10 to IL-17A ratio supported immunoregulation in the intervention treatment compared to the placebo treatment (P = 0.02). IL-10 levels (P = 0.001) and IL-10 to IL-17A ratio (P = 0.02) were associated with Gammaproteobacterial community on the skin. The change in Treg frequencies was associated with the relative abundance of skin Thermoactinomycetaceae 1 (P = 0.002) and unclassified Alphaproteobacteria (P < 0.001). After 28 days, skin bacterial community still differed in the intervention treatment compared to baseline (P < 0.02). CONCLUSIONS: This is the first double-blinded placebo-controlled study to show that daily exposure to microbial biodiversity is associated with immune modulation in humans. The findings support the biodiversity hypothesis of immune-mediated diseases. We conclude that environmental microbiota may contribute to child health, and that adding microbiological diversity to everyday living environment may support immunoregulation.


Assuntos
Interleucina-10 , Interleucina-17 , Bactérias/genética , Biodiversidade , Pré-Escolar , Citocinas , Método Duplo-Cego , Humanos , Areia , Linfócitos T Reguladores
16.
Environ Pollut ; 307: 119569, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35680061

RESUMO

A biological treatment method was tested in laboratory conditions for the removal of hydrocarbons contained in a waste disposal soil sample consisting of excavated sandy soil from a former fueling station. Two fractions of hydrocarbons were quantified by GC-FID: diesel (C10-C21) and lubricant oil (C22-C40). Meat and bone meal (MBM, 1% w/w) was used as a bio-stimulant agent for soil organisms. Cyclodextrin, an oligosaccharide produced from starch by enzymatic conversion, was also used to assess its ability to improve the bioavailability/biodegradability of hydrocarbons in the soil. Parameters such as temperature, pH, water content and aeration (O2 availability) were monitored and optimized to favor degradation processes. Two different experimental tests were prepared: one to measure the degradation of hydrocarbons; the other to monitor the mobility of some elements in the soil and in the leachate produced by watering with tap water. Soil samples treated with MBM and cyclodextrin showed, over time, a greater removal of the more persistent hydrocarbon fraction (lubricant oil). MBM-treated soils underwent a faster hydrocarbon removal kinetic, especially in the first treatment period. However, the final hydrocarbon concentrations are comparable in all treatments, including control. Over time, the effect of cyclodextrin on hydrocarbon degradation seemed to be relevant. MBM-treated soils sequestered lead in the very first weeks. These results highlight the intrinsic capacity of soil, and its indigenous microbial communities, to degrade petroleum hydrocarbons and suggest that MBM-induced bioremediation is a promising, environmentally friendly technology which should be considered when dealing with hydrocarbon/heavy metal co-contaminated soils.


Assuntos
Ciclodextrinas , Metais Pesados , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Lubrificantes , Petróleo/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Água
17.
Environ Epidemiol ; 6(3): e212, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35702504

RESUMO

The incidence of immune-mediated diseases (IMDs) is increasing rapidly in the developed countries constituting a huge medical, economic, and societal challenge. The exposome plays an important role since genetic factors cannot explain such a rapid change. In the Human Exposomic Determinants of Immune Mediated Diseases (HEDIMED) project, altogether 22 academic and industrial partners join their multidisciplinary forces to identify exposomic determinants that are driving the IMD epidemic. The project is based on a combination of data and biological samples from large clinical cohorts constituting about 350,000 pregnant women, 30,000 children prospectively followed from birth, and 7,000 children from cross-sectional studies. HEDIMED focuses on common chronic IMDs that cause a significant disease burden, including type 1 diabetes, celiac disease, allergy, and asthma. Exposomic disease determinants and the underlying biological pathways will be identified by an exploratory approach using advanced omics and multiplex technologies combined with cutting-edge data mining technologies. Emphasis is put on fetal and childhood exposome since the IMD disease processes start early. Inclusion of several IMDs makes it possible to identify common exposomic determinants for the diseases, thus facilitating the development of widely operating preventive and curative treatments. HEDIMED includes data and samples from birth cohorts and clinical trials that have used exposomic interventions and cell and organ culture models to identify mechanisms of the observed associations. Importantly, HEDIMED generates a toolbox that offers science-based functional tools for key stakeholders to control the IMD epidemic. Altogether, HEDIMED aims at innovations, which become widely exploited in diagnostic, therapeutic, preventive, and health economic approaches.

19.
Immun Inflamm Dis ; 10(3): e579, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873877

RESUMO

INTRODUCTION: The hygiene hypothesis suggests that decrease in early life infections due to increased societal-level hygiene standards subjects one to allergic and autoimmune diseases. In this report, we have studied the effect of sterilized forest soil and plant-based material on mouse immune system and gut microbiome. METHODS: Inbred C57Bl/6 mice maintained in normal sterile environment were subjected to autoclaved forest soil-derived powder in their bedding for 1 h a day for 3 weeks. Immune response was measured by immune cell flow cytometry, serum cytokine enzyme-linked immunoassay (ELISA) and quantitative polymerase chain reaction (qPCR) analysis. Furthermore, the mouse gut microbiome was analyzed by sequencing. RESULTS: When compared to control mice, mice treated with soil-derived powder had decreased level of pro-inflammatory cytokines namely interleukin (IL)-17F and IL-21 in the serum. Furthermore, splenocytes from mice treated with soil-derived powder expressed less IL-1b, IL-5, IL-6, IL-13, and tumor necrosis factor (TNF) upon cell activation. Gut microbiome appeared to be stabilized by the treatment. CONCLUSIONS: These results provide insights on the effect of biodiversity on murine immune system in sterile environment. Subjecting mice to soil-based plant and microbe structures appears to elicit immune response that could be beneficial, for example, in type 2 inflammation-related diseases, that is, allergic diseases.


Assuntos
Microbioma Gastrointestinal , Sistema Imunitário , Animais , Citocinas/imunologia , Hipótese da Higiene , Sistema Imunitário/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plantas/microbiologia , Microbiologia do Solo
20.
Artigo em Inglês | MEDLINE | ID: mdl-34682400

RESUMO

The "Earthrise" photograph, taken on the 1968 Apollo 8 mission, became one of the most significant images of the 20th Century. It triggered a profound shift in environmental awareness and the potential for human unity-inspiring the first Earth Day in 1970. Taking inspiration from these events 50 years later, we initiated Project Earthrise at our 2020 annual conference of inVIVO Planetary Health. This builds on the emergent concept of planetary health, which provides a shared narrative to integrate rich and diverse approaches from all aspects of society towards shared solutions to global challenges. The acute catastrophe of the COVID-19 pandemic has drawn greater attention to many other interconnected global health, environmental, social, spiritual, and economic problems that have been underappreciated or neglected for decades. This is accelerating opportunities for greater collaborative action, as many groups now focus on the necessity of a "Great Transition". While ambitious integrative efforts have never been more important, it is imperative to apply these with mutualistic value systems as a compass, as we seek to make wiser choices. Project Earthrise is our contribution to this important process. This underscores the imperative for creative ecological solutions to challenges in all systems, on all scales with advancing global urbanization in the digital age-for personal, environmental, economic and societal health alike. At the same time, our agenda seeks to equally consider our social and spiritual ecology as it does natural ecology. Revisiting the inspiration of "Earthrise", we welcome diverse perspectives from across all dimensions of the arts and the sciences, to explore novel solutions and new normative values. Building on academic rigor, we seek to place greater value on imagination, kindness and mutualism as we address our greatest challenges, for the health of people, places and planet.


Assuntos
COVID-19 , Planetas , Planeta Terra , Humanos , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...