Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indian J Ophthalmol ; 70(7): 2578-2583, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35791160

RESUMO

Purpose: Stickler syndrome is associated with the development of rhegmatogenous retinal detachment (RRD), and often presents with ocular, auditory, skeletal, and orofacial abnormalities. Molecular analysis has proven effective in diagnosis, confirmation and classification of the disease. We aimed to describe the utility of next-generation sequencing (NGS) in genetic analysis of four Indian families with suspected Stickler syndrome. Methods: The index cases presented with retinal detachment with family history. Genetic analysis in the index case was performed by next-generation sequencing of inherited retinal degeneration genes, and validated by Sanger sequencing followed by co-segregation analysis in the other family members. Results: Twenty patients were included for the genetic analysis (15 males and 5 females from four families). Clinical details were available for 15 patients (30 eyes). Fourteen eyes (11 patients) developed RRD. In the 16 eyes without RRD, 8 underwent barrage laser to lattice degeneration and 8 were under observation. Disease segregating heterozygous mutations with pathogenic/likely pathogenic effect was identified in COL2A1 (c.4318-1G>A, c.141G>A, c.1221+1G>A for 3 families) and COL11A1 (c.1737+1 G>A for 1 family) gene. In addition to the mutation in the COL2A1 gene, a pathogenic heterozygous variant associated with risk for arrhythmogenic right ventricular cardiomyopathy (ARVC) was identified in one member. Conclusion: NGS testing confirmed the presence of the causative gene for Stickler syndrome in the index case followed by evaluation of family members and confirmation of genetic and ocular findings. We believe that this may be the first such report of families with RRD from India.


Assuntos
Doenças do Tecido Conjuntivo , Oftalmopatias Hereditárias , Osteocondrodisplasias , Degeneração Retiniana , Descolamento Retiniano , Artrite , Doenças do Tecido Conjuntivo/diagnóstico , Doenças do Tecido Conjuntivo/genética , Oftalmopatias Hereditárias/genética , Feminino , Testes Genéticos , Perda Auditiva Neurossensorial , Humanos , Masculino , Linhagem , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/genética
2.
Proc Natl Acad Sci U S A ; 114(37): 9948-9953, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28851829

RESUMO

Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner. Importantly, GCs activated HIF transcriptional responses in a zebrafish mutant line harboring a point mutation in the GR DNA-binding domain, suggesting a nontranscriptional route for GR to activate HIF signaling. We noted that GCs increase the transcription of several key regulators of glucose metabolism that contain HREs, suggesting a role for GC/HIF cross-talk in regulating glucose homeostasis. Importantly, we show that GCs stabilize HIF protein in intact human liver tissue and isolated hepatocytes. We find that GCs limit the expression of Von Hippel Lindau protein (pVHL), a negative regulator of HIF, and that treatment with the c-src inhibitor PP2 rescued this effect, suggesting a role for GCs in promoting c-src-mediated proteosomal degradation of pVHL. Our data support a model for GCs to stabilize HIF through activation of c-src and subsequent destabilization of pVHL.


Assuntos
Glucocorticoides/farmacologia , Glucocorticoides/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Hipóxia Celular/fisiologia , Humanos , Hipóxia , Ligases/metabolismo , Fígado/metabolismo , Ligação Proteica , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Peixe-Zebra , Doença de von Hippel-Lindau/metabolismo
3.
PLoS Genet ; 6(4): e1000914, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20421934

RESUMO

LRRK2 plays an important role in Parkinson's disease (PD), but its biological functions are largely unknown. Here, we cloned the homolog of human LRRK2, characterized its expression, and investigated its biological functions in zebrafish. The blockage of zebrafish LRRK2 (zLRRK2) protein by morpholinos caused embryonic lethality and severe developmental defects such as growth retardation and loss of neurons. In contrast, the deletion of the WD40 domain of zLRRK2 by morpholinos targeting splicing did not induce severe embryonic developmental defects; rather it caused Parkinsonism-like phenotypes, including loss of dopaminergic neurons in diencephalon and locomotion defects. These neurodegenerative and locomotion defects could be rescued by over-expressing zLRRK2 or hLRRK2 mRNA. The administration of L-dopa could also rescue the locomotion defects, but not the neurodegeneration. Taken together, our results demonstrate that zLRRK2 is an ortholog of hLRRK2 and that the deletion of WD40 domain of zLRRK2 provides a disease model for PD.


Assuntos
Neurônios/metabolismo , Transtornos Parkinsonianos/genética , Proteínas Serina-Treonina Quinases/genética , Deleção de Sequência , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação , Degeneração Neural/genética , Transtornos Parkinsonianos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...