Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38005879

RESUMO

Norovirus is the leading cause of viral gastroenteritis worldwide, and there are no approved vaccines or therapeutic treatments for chronic or severe norovirus infections. The structural characterisation of the norovirus protease and drug development has predominantly focused upon GI.1 noroviruses, despite most global outbreaks being caused by GII.4 noroviruses. Here, we determined the crystal structures of the GII.4 Sydney 2012 ligand-free norovirus protease at 2.79 Å and at 1.83 Å with a covalently bound high-affinity (IC50 = 0.37 µM) protease inhibitor (NV-004). We show that the active sites of the ligand-free protease structure are present in both open and closed conformations, as determined by their Arg112 side chain orientation. A comparative analysis of the ligand-free and ligand-bound protease structures reveals significant structural differences in the active site cleft and substrate-binding pockets when an inhibitor is covalently bound. We also report a second molecule of NV-004 non-covalently bound within the S4 substrate binding pocket via hydrophobic contacts and a water-mediated hydrogen bond. These new insights can guide structure-aided drug design against the GII.4 genogroup of noroviruses.


Assuntos
Fármacos Anti-HIV , Infecções por Caliciviridae , Norovirus , Humanos , Peptídeo Hidrolases/metabolismo , Norovirus/metabolismo , Endopeptidases/metabolismo , Domínio Catalítico , Fármacos Anti-HIV/metabolismo , Genótipo , Filogenia
2.
ACS Pharmacol Transl Sci ; 6(1): 52-64, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36654758

RESUMO

The related peptides pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) have diverse biological functions in peripheral tissues and the central nervous system. Therefore, these peptides and their three receptors represent potential drug targets for several conditions, including neurological and pain-related disorders. However, very little is known about how these peptides regulate their receptors through processes such as internalization. Therefore, we developed tools to study receptor regulation through the synthesis of fluorescently labeled analogues of PACAP-38, PACAP-27, and VIP using copper-mediated 1,3-dipolar cycloaddition of the Cy5 fluorophore. The functionality of Cy5-labeled peptides at their receptors was confirmed in cAMP accumulation assays. Internalization of the Cy5-labeled peptides was then examined and quantified at two distinct PAC1 receptor splice variants, VPAC1 and VPAC2 receptors in transfected cells. All labeled peptides were functional, exhibiting comparable cAMP pharmacology to their unlabeled counterparts and underwent internalization in a time-dependent manner. Temporal differences in the internalization profiles were observed between Cy5-labeled peptides at the PAC1n, PAC1s, VPAC1, and VPAC2 receptors. Interestingly, the pattern of Cy5-labeled peptide activity differed for cAMP accumulation and internalization, indicating that these peptides differentially stimulate cAMP accumulation and internalization and therefore display biased agonism. This novel insight into PACAP-responsive receptor signaling and internalization may provide a unique avenue for future therapeutic development. The fluorescently labeled PACAP and VIP peptides described herein, which we validated as tools to study receptor internalization, will have utility across a broad range of applications and provide greater insight into this receptor family.

3.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555690

RESUMO

Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and validated antibody tools. We profiled antibodies for immunodetection of RAMP1 using Western blotting, immunocytochemistry and immunohistochemistry, including using RAMP1 knockout mouse tissue. Most antibodies could detect RAMP1 in Western blotting and immunocytochemistry using transfected cells. Two antibodies (844, ab256575) could detect a RAMP1-like band in Western blots of rodent brain but not RAMP1 knockout mice. However, cross-reactivity with other proteins was evident for all antibodies. This cross-reactivity prevented clear conclusions about RAMP1 anatomical localization, as each antibody detected a distinct pattern of immunoreactivity in rodent brain. We cannot confidently attribute immunoreactivity produced by RAMP1 antibodies (including 844) to the presence of RAMP1 protein in immunohistochemical applications in brain tissue. RAMP1 expression in brain and other tissues therefore needs to be revisited using RAMP1 antibodies that have been comprehensively validated using multiple strategies to establish multiple lines of convincing evidence. As RAMP1 is important for other GPCR/ligand pairings, our results have broader significance beyond the CGRP field.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Camundongos , Animais , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Imuno-Histoquímica , Transtornos de Enxaqueca/metabolismo
4.
ACS Infect Dis ; 8(12): 2413-2429, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36413173

RESUMO

With the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS). We then designed and synthesized 38 polymyxin analogues, incorporating these unique building blocks at the N-terminus, or to replace hydrophobic residues at positions 6 and 7 of the native lipopeptides. Several polymyxin analogues bearing one or more S-linked lipids were found to be equipotent to polymyxin, showed minimal kidney nephrotoxicity, and demonstrated activity against several World Health Organisation (WHO) priority pathogens. The S-lipidation strategy has demonstrated potential as a novel approach to prepare innovative new lipopeptide antibiotics.


Assuntos
Antibacterianos , Polimixina B , Antibacterianos/farmacologia
5.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430275

RESUMO

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide expressed in the trigeminal ganglia (TG). The TG conducts nociceptive signals in the head and may play roles in migraine. PACAP infusion provokes headaches in healthy individuals and migraine-like attacks in patients; however, it is not clear whether targeting this system could be therapeutically efficacious. To effectively target the PACAP system, an understanding of PACAP receptor distribution is required. Therefore, this study aimed to characterize commercially available antibodies and use these to detect PACAP-responsive receptors in the TG. Antibodies were initially validated in receptor transfected cell models and then used to explore receptor expression in rat and human TG. Antibodies were identified that could detect PACAP-responsive receptors, including the first antibody to differentiate between the PAC1n and PAC1s receptor splice variants. PAC1, VPAC1, and VPAC2 receptor-like immunoreactivity were observed in subpopulations of both neuronal and glial-like cells in the TG. In this study, PAC1, VPAC1, and VPAC2 receptors were detected in the TG, suggesting they are all potential targets to treat migraine. These antibodies may be useful tools to help elucidate PACAP-responsive receptor expression in tissues. However, most antibodies exhibited limitations, requiring the use of multiple methodologies and the careful inclusion of controls.


Assuntos
Transtornos de Enxaqueca , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Ratos , Animais , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Gânglio Trigeminal/metabolismo , Expressão Gênica , Anticorpos , Transtornos de Enxaqueca/genética
6.
Cephalalgia ; 42(9): 815-826, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35410497

RESUMO

BACKGROUND AND AIM: Therapeutics that reduce calcitonin gene-related peptide activity are effective migraine treatments. However, gaps remain in our understanding of the molecular mechanisms that link calcitonin gene-related peptide to migraine. The amylin 1 receptor responds potently to calcitonin gene-related peptide, and to the related peptide amylin, but its role in relation to either peptide or to migraine is unclear. We sought to better understand the expression of the amylin 1 receptor protein subunit, the calcitonin receptor, in the rodent brain. METHODS: We profiled three antibodies for immunodetection of calcitonin receptor, using immunocytochemistry, western blotting, and calcitonin receptor conditional knockout mouse tissue. Selected migraine-relevant rat brain regions were then examined for calcitonin receptor-like immunoreactivity. RESULTS: All three antibodies detected calcitonin receptor protein but only one (188/10) produced robust immunostaining in rodent brain, under the conditions used. Calcitonin receptor-like immunoreactivity was apparent in the rat brainstem and midbrain including the locus coeruleus, periaqueductal grey and spinal trigeminal nucleus. CONCLUSIONS: Anti-calcitonin receptor antibodies require comprehensive profiling to ensure confidence in the detection of calcitonin receptor. Using a validated antibody, calcitonin receptor-like immunoreactivity was detected in several brain regions relevant to migraine. Further research is needed to understand the functional consequences of calcitonin receptor expression for calcitonin gene-related peptide or amylin physiology and pathophysiology.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Animais , Encéfalo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Camundongos , Ratos , Receptores da Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas
7.
Front Pharmacol ; 13: 832589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341216

RESUMO

Signaling through calcitonin gene-related peptide (CGRP) receptors is associated with pain, migraine, and energy expenditure. Small molecule and monoclonal antibody CGRP receptor antagonists that block endogenous CGRP action are in clinical use as anti-migraine therapies. By comparison, the potential utility of peptide antagonists has received less attention due to suboptimal pharmacokinetic properties. Lipidation is an established strategy to increase peptide half-life in vivo. This study aimed to explore the feasibility of developing lipidated CGRP peptide antagonists that retain receptor antagonist activity in vitro and attenuate endogenous CGRP action in vivo. CGRP peptide analogues based on the archetypal CGRP receptor antagonist, CGRP8-37, were palmitoylated at the N-terminus, position 24, and near the C-terminus at position 35. The antagonist activities of the lipidated peptide analogues were tested in vitro using transfected Cos-7 cells expressing either the human or mouse CGRP receptor, amylin subtype 1 (AMY1) receptor, adrenomedullin (AM) receptors, or calcitonin receptor. Antagonist activities were also evaluated in SK-N-MC cells that endogenously express the human CGRP receptor. Lipidated peptides were then tested for their ability to antagonize endogenous CGRP action in vivo using a capsaicin-induced dermal vasodilation (CIDV) model in C57/BL6J mice. All lipidated peptides except for the C-terminally modified analogue retained potent antagonist activity compared to CGRP8-37 towards the CGRP receptor. The lipidated peptides also retained, and sometimes gained, antagonist activities at AMY1, AM1 and AM2 receptors. Several lipidated peptides produced robust inhibition of CIDV in mice. This study demonstrates that selected lipidated peptide antagonists based on αCGRP8-37 retain potent antagonist activity at the CGRP receptor and are capable of inhibition of endogenous CGRP action in vivo. These findings suggest that lipidation can be applied to peptide antagonists, such as αCGRP8-37 and are a potential strategy for antagonizing CGRP action.

8.
Br J Pharmacol ; 179(3): 416-434, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34289083

RESUMO

BACKGROUND AND PURPOSE: The calcitonin (CT) receptor family is complex, comprising two receptors (the CT receptor [CTR] and the CTR-like receptor [CLR]), three accessory proteins (RAMPs) and multiple endogenous peptides. This family contains several important drug targets, including CGRP, which is targeted by migraine therapeutics. The pharmacology of this receptor family is poorly characterised in species other than rats and humans. To facilitate understanding of translational and preclinical data, we need to know the receptor pharmacology of this family in mice. EXPERIMENTAL APPROACH: Plasmids encoding mouse CLR/CTR and RAMPs were transiently transfected into Cos-7 cells. cAMP production was measured in response to agonists in the absence or presence of antagonists. KEY RESULTS: We report the first synthesis and characterisation of mouse adrenomedullin, adrenomedullin 2 and ßCGRP and of mouse CTR without or with mouse RAMPs. Receptors containing m-CTR had subtly different pharmacology than human receptors; they were promiscuous in their pharmacology, both with and without RAMPs. Several peptides, including mouse αCGRP and mouse adrenomedullin 2, were potent agonists of the m-CTR:m-RAMP3 complex. Pharmacological profiles of receptors comprising m-CLR:m-RAMPs were generally similar to those of their human counterparts, albeit with reduced specificity. CONCLUSION AND IMPLICATIONS: Mouse receptor pharmacology differed from that in humans, with mouse receptors displaying reduced discrimination between ligands. This creates challenges for interpreting which receptor may underlie an effect in preclinical models and thus translation of findings from mice to humans. It also highlights the need for new ligands to differentiate between these complexes. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary).. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Assuntos
Transtornos de Enxaqueca , Hormônios Peptídicos , Adrenomedulina/metabolismo , Adrenomedulina/farmacologia , Animais , Calcitonina/metabolismo , Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/química , Humanos , Ligantes , Camundongos , Ratos , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina , Receptores da Calcitonina/química
9.
Br J Pharmacol ; 179(3): 435-453, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34612509

RESUMO

BACKGROUND AND PURPOSE: The pituitary adenylate cyclase-activating peptide (PACAP) family is of clinical interest for the treatment of migraine. These peptides activate three different PACAP-responsive class B G protein-coupled receptors: the PAC1 , VPAC1 and VPAC2 receptors. The PAC1 receptor may be alternatively spliced, generating variants that can differ in their pharmacological or signalling profiles. To inform drug discovery efforts targeting migraine, we need to better understand how the different PACAP-responsive receptors signal and how effectively these responses can be blocked by antagonists. EXPERIMENTAL APPROACH: The signalling profiles of the human PAC1n , PAC1s , VPAC1 and VPAC2 receptors were examined in transfected Cos7 cells for cAMP, IP1 , pAkt, pERK and pCREB. Biased signalling was then quantified. The ability of antagonists to block PACAP-38, PACAP-27 or VIP stimulated cAMP accumulation at PACAP-responsive receptors was also determined. KEY RESULTS: PACAP-responsive receptors exhibited varied pharmacological profiles but activated signalling in a similar manner. The PAC1n and PAC1s receptors displayed distinct pharmacology. At the PAC1s receptor, VIP and PHM were more potent than at the PAC1n receptor. PACAP-responsive receptors displayed agonist-dependent antagonism where PACAP-38 was less effectively antagonised compared to PACAP-27 and VIP. CONCLUSIONS AND IMPLICATIONS: The distinct pharmacological profile displayed by the PAC1s receptor suggests that it can act as a dual receptor for VIP and PACAP. Furthermore, the effectiveness of blocking a signalling pathway can be influenced by which endogenous PACAP family agonist is present. These effects have potential implications for the development and effectiveness of drugs targeting the PACAP system. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Assuntos
Transtornos de Enxaqueca , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Descoberta de Drogas , Humanos , Transtornos de Enxaqueca/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Peptídeo Intestinal Vasoativo
10.
Ann Neurol ; 89(6): 1157-1171, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33772845

RESUMO

OBJECTIVE: Migraine is a prevalent and disabling neurological disease. Its genesis is poorly understood, and there remains unmet clinical need. We aimed to identify mechanisms and thus novel therapeutic targets for migraine using human models of migraine and translational models in animals, with emphasis on amylin, a close relative of calcitonin gene-related peptide (CGRP). METHODS: Thirty-six migraine without aura patients were enrolled in a randomized, double-blind, 2-way, crossover, positive-controlled clinical trial study to receive infusion of an amylin analogue pramlintide or human αCGRP on 2 different experimental days. Furthermore, translational studies in cells and mouse models, and rat, mouse and human tissue samples were conducted. RESULTS: Thirty patients (88%) developed headache after pramlintide infusion, compared to 33 (97%) after CGRP (p = 0.375). Fourteen patients (41%) developed migraine-like attacks after pramlintide infusion, compared to 19 patients (56%) after CGRP (p = 0.180). The pramlintide-induced migraine-like attacks had similar clinical characteristics to those induced by CGRP. There were differences between treatments in vascular parameters. Human receptor pharmacology studies showed that an amylin receptor likely mediates these pramlintide-provoked effects, rather than the canonical CGRP receptor. Supporting this, preclinical experiments investigating symptoms associated with migraine showed that amylin treatment, like CGRP, caused cutaneous hypersensitivity and light aversion in mice. INTERPRETATION: Our findings propose amylin receptor agonism as a novel contributor to migraine pathogenesis. Greater therapeutic gains could therefore be made for migraine patients through dual amylin and CGRP receptor antagonism, rather than selectively targeting the canonical CGRP receptor. ANN NEUROL 2021;89:1157-1171.


Assuntos
Agonistas dos Receptores da Amilina/efeitos adversos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/efeitos adversos , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/efeitos adversos , Estudos Cross-Over , Método Duplo-Cego , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Gânglio Trigeminal/metabolismo
11.
Curr Med Chem ; 28(19): 3713-3752, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33023429

RESUMO

BACKGROUND: Prostate cancer is one of the most common cancers worldwide, with approximately 1.1 million cases diagnosed annually. The rapid development of molecular imaging has facilitated greater structural understanding, which can help formulate novel combinations of therapeutic regimens and more accurate diagnosis, avoiding unnecessary prostate biopsies. This accumulated knowledge also provides a greater understanding of the aggressive stages of the disease and tumor recurrence. Recently, much progress has been made on developing peptidomimetic-based inhibitors as promising candidates to effectively bind to the prostate- specific membrane antigen (PSMA), which is expressed by prostate cancer cells. OBJECTIVE: In this review, recent advances covering small-molecule and peptide-based PSMA inhibitors will be extensively reviewed, providing a base for the rational design of future PSMA inhibitors. METHOD: Herein, the literature on selected PSMA inhibitors that have been developed from 1996 to 2020 were reviewed, emphasizing recent synthetic advances and chemical strategies whilst highlighting therapeutic potential and drawbacks of each inhibitor. RESULTS: Synthesized inhibitors presented in this review demonstrate the clinical application of certain PSMA inhibitors, exhibited in vitro and in vivo. CONCLUSION: This review highlights the clinical potential of PSMA inhibitors, analyzing the advantages and setbacks of the chemical synthetic methodologies utilized, setting precedence for the discovery of novel PSMA inhibitors for future clinical applications.


Assuntos
Tomografia por Emissão de Pósitrons , Neoplasias da Próstata , Humanos , Masculino , Recidiva Local de Neoplasia , Peptídeos
12.
Front Pharmacol ; 11: 1240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973499

RESUMO

The "gepants" are a class of calcitonin gene-related peptide (CGRP) receptor antagonist molecules that have been developed for the prevention and treatment of migraine. Rimegepant is reported to act at the CGRP receptor, has good oral bioavailability, and has had positive clinical trial results. However, there is very little data available describing its receptor pharmacology. Importantly, rimegepant activity at the AMY1 receptor, a second potent CGRP receptor that is known to be expressed in the trigeminovascular system, has not been reported. The ability of rimegepant to antagonize activation of human CGRP, AMY1, and related adrenomedullin receptors was determined in transfected in Cos7 cells. Rimegepant was an effective antagonist at both the CGRP and AMY1 receptor. The antagonism of both CGRP and AMY1 receptors may have implications for our understanding of the mechanism of action of rimegepant in the treatment of migraine.

13.
ACS Pharmacol Transl Sci ; 3(2): 246-262, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32296766

RESUMO

Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.

14.
ACS Pharmacol Transl Sci ; 3(2): 296-304, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32296769

RESUMO

Calcitonin gene-related peptide (CGRP) is a neuropeptide that is involved in the transmission of pain. Drugs targeting CGRP or a CGRP receptor are efficacious in the treatment of migraine. The canonical CGRP receptor is a complex of a G protein-coupled receptor, the calcitonin-like receptor (CLR), with an accessory protein, receptor activity-modifying protein 1 (RAMP1). A second receptor, the AMY1 receptor, a complex of the calcitonin receptor with RAMP1, is a dual high-affinity receptor for CGRP and amylin. Receptor regulatory processes, such as internalization, are crucial for controlling peptide and drug responsiveness. Given the importance of CGRP receptor activity in migraine we compared the internalization profiles of both receptors for CGRP using novel fluorescent probes and a combination of live cell imaging, fixed cell imaging, and ELISA. This revealed stark differences in the regulation of each receptor with the AMY1 receptor unexpectedly showing little internalization.

15.
Biochemistry ; 57(8): 1410-1422, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29388762

RESUMO

The calcitonin receptor-like receptor (CLR) is a class B G protein-coupled receptor (GPCR) that forms the basis of three pharmacologically distinct receptors, the calcitonin gene-related peptide (CGRP) receptor, and two adrenomedullin (AM) receptors. These three receptors are created by CLR interacting with three receptor activity-modifying proteins (RAMPs). Class B GPCRs have an N-terminal extracellular domain (ECD) and transmembrane bundle that are both important for binding endogenous ligands. These two domains are joined together by a stretch of amino acids that is referred to as the "stalk". Studies of other class B GPCRs suggest that the stalk may act as hinge, allowing the ECD to adopt multiple conformations. It is unclear what the role of the stalk is within CLR and whether RAMPs can influence its function. Therefore, this study investigated the role of this region using an alanine scan. Effects of mutations were measured with all three RAMPs through cell surface expression, cAMP production and, in select cases, radioligand binding and total cell expression assays. Most mutants did not affect expression or cAMP signaling. CLR C127A, N140A, F142A, and L144A impaired cell surface expression with all three RAMPs. T125A decreased the potency of all peptides at all receptors. N128A, V135A, and L139A showed ligand-dependent effects. While the stalk appears to play a role in CLR function, the effect of RAMPs on this region seems limited, in contrast to their effects on the structure of CLR in other receptor regions.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Proteína Semelhante a Receptor de Calcitonina/análise , Proteína Semelhante a Receptor de Calcitonina/genética , Chlorocebus aethiops , Humanos , Domínios Proteicos , Receptores de Adrenomedulina/metabolismo
16.
Org Lett ; 20(3): 788-791, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29337569

RESUMO

The first total synthesis of the highly N-methylated acetylene-containing lipopeptide jahanyne, an apoptosis-inducing natural product from marine cyanobacteria, is reported. A late-stage solution-phase coupling enabled introduction of the C-terminal ketone pyrrolidine moiety. A modified Fmoc solid-phase synthesis strategy was adopted to effectively couple multiple sterically hindered N-methylated amino acids while suppressing epimerization. The total synthesis has enabled confirmation of the proposed absolute configuration of natural jahanyne.


Assuntos
Lipopeptídeos/síntese química , Acetileno , Aminoácidos , Estrutura Molecular , Técnicas de Síntese em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...