Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771742

RESUMO

Sulfur trioxide (SO3) is an important oxide of sulfur and a key intermediate in the formation of sulfuric acid (H2SO4, SA) in the Earth's atmosphere. This conversion to SA occurs rapidly due to the reaction of SO3 with a water dimer. However, gas-phase SO3 has been measured directly at concentrations that are comparable to that of SA under polluted mega-city conditions, indicating gaps in our current understanding of the sources and fates of SO3. Its reaction with atmospheric acids could be one such fate that can have significant implications for atmospheric chemistry. In the present investigation, laboratory experiments were conducted in a flow reactor to generate a range of previously uncharacterized condensable sulfur-containing reaction products by reacting SO3 with a set of atmospherically relevant inorganic and organic acids at room temperature and atmospheric pressure. Specifically, key inorganic acids known to be responsible for most ambient new particle formation events, iodic acid (HIO3, IA) and SA, are observed to react promptly with SO3 to form iodic sulfuric anhydride (IO3SO3H, ISA) and disulfuric acid (H2S2O7, DSA). Carboxylic sulfuric anhydrides (CSAs) were observed to form by the reaction of SO3 with C2 and C3 monocarboxylic (acetic and propanoic acid) and dicarboxylic (oxalic and malonic acid)-carboxylic acids. The formed products were detected by a nitrate-ion-based chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (NO3--CI-APi-TOF; NO3--CIMS). Quantum chemical methods were used to compute the relevant SO3 reaction rate coefficients, probe the reaction mechanisms, and model the ionization chemistry inherent in the detection of the products by NO3--CIMS. Additionally, we use NO3--CIMS ambient data to report that significant concentrations of SO3 and its acid anhydride reaction products are present under polluted, marine and polar, and volcanic plume conditions. Considering that these regions are rich in the acid precursors studied here, the reported reactions need to be accounted for in the modeling of atmospheric new particle formation.

2.
Environ Sci Atmos ; 4(5): 531-546, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38764888

RESUMO

Iodine oxoacids are recognised for their significant contribution to the formation of new particles in marine and polar atmospheres. Nevertheless, to incorporate the iodine oxoacid nucleation mechanism into global simulations, it is essential to comprehend how this mechanism varies under various atmospheric conditions. In this study, we combined measurements from the CLOUD (Cosmic Leaving OUtdoor Droplets) chamber at CERN and simulations with a kinetic model to investigate the impact of temperature, ionisation, and humidity on iodine oxoacid nucleation. Our findings reveal that ion-induced particle formation rates remain largely unaffected by changes in temperature. However, neutral particle formation rates experience a significant increase when the temperature drops from +10 °C to -10 °C. Running the kinetic model with varying ionisation rates demonstrates that the particle formation rate only increases with a higher ionisation rate when the iodic acid concentration exceeds 1.5 × 107 cm-3, a concentration rarely reached in pristine marine atmospheres. Consequently, our simulations suggest that, despite higher ionisation rates, the charged cluster nucleation pathway of iodic acid is unlikely to be enhanced in the upper troposphere by higher ionisation rates. Instead, the neutral nucleation channel is likely to be the dominant channel in that region. Notably, the iodine oxoacid nucleation mechanism remains unaffected by changes in relative humidity from 2% to 80%. However, under unrealistically dry conditions (below 0.008% RH at +10 °C), iodine oxides (I2O4 and I2O5) significantly enhance formation rates. Therefore, we conclude that iodine oxoacid nucleation is the dominant nucleation mechanism for iodine nucleation in the marine and polar boundary layer atmosphere.

3.
Environ Sci Technol ; 58(17): 7314-7324, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626432

RESUMO

New particle formation via the ion-mediated sulfuric acid and ammonia molecular clustering mechanism remains the most widely observed and experimentally verified pathway. Recent laboratory and molecular level observations indicate iodine-driven nucleation as a potentially important source of new particles, especially in coastal areas. In this study, we assess the role of iodine species in particle formation using the best available molecular thermochemistry data and coupled to a detailed 1-d column model which is run along air mass trajectories over the Southern Ocean and the coast of Antarctica. In the air masses traversing the open ocean, ion-mediated SA-NH3 clustering appears insufficient to explain the observed particle size distribution, wherein the simulated Aitken mode is lacking. Including the iodine-assisted particle formation improves the modeled Aitken mode representation with an increase in the number of freshly formed particles. This implies that more particles survive and grow to Aitken mode sizes via condensation of gaseous precursors and heterogeneous reactions. Under certain meteorological conditions, iodine-assisted particle formation can increase cloud condensation nuclei concentrations by 20%-100%.


Assuntos
Aerossóis , Iodo , Regiões Antárticas , Iodo/química , Tamanho da Partícula , Poluentes Atmosféricos , Material Particulado
4.
Sci Data ; 10(1): 690, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821470

RESUMO

The Arctic environment is transforming rapidly due to climate change. Aerosols' abundance and physicochemical characteristics play a crucial, yet uncertain, role in these changes due to their influence on the surface energy budget through direct interaction with solar radiation and indirectly via cloud formation. Importantly, Arctic aerosol properties are also changing in response to climate change. Despite their importance, year-round measurements of their characteristics are sparse in the Arctic and often confined to lower latitudes at Arctic land-based stations and/or short high-latitude summertime campaigns. Here, we present unique aerosol microphysics and chemical composition datasets collected during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, in the central Arctic. These datasets, which include aerosol particle number concentrations, size distributions, cloud condensation nuclei concentrations, fluorescent aerosol concentrations and properties, and aerosol bulk chemical composition (black carbon, sulfate, nitrate, ammonium, chloride, and organics) will serve to improve our understanding of high-Arctic aerosol processes, with relevance towards improved modelling of the future Arctic (and global) climate.

5.
Nat Commun ; 14(1): 1769, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997509

RESUMO

Chlorine radicals are strong atmospheric oxidants known to play an important role in the depletion of surface ozone and the degradation of methane in the Arctic troposphere. Initial oxidation processes of chlorine produce chlorine oxides, and it has been speculated that the final oxidation steps lead to the formation of chloric (HClO3) and perchloric (HClO4) acids, although these two species have not been detected in the atmosphere. Here, we present atmospheric observations of gas-phase HClO3 and HClO4. Significant levels of HClO3 were observed during springtime at Greenland (Villum Research Station), Ny-Ålesund research station and over the central Arctic Ocean, on-board research vessel Polarstern during the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) campaign, with estimated concentrations up to 7 × 106 molecule cm-3. The increase in HClO3, concomitantly with that in HClO4, was linked to the increase in bromine levels. These observations indicated that bromine chemistry enhances the formation of OClO, which is subsequently oxidized into HClO3 and HClO4 by hydroxyl radicals. HClO3 and HClO4 are not photoactive and therefore their loss through heterogeneous uptake on aerosol and snow surfaces can function as a previously missing atmospheric sink for reactive chlorine, thereby reducing the chlorine-driven oxidation capacity in the Arctic boundary layer. Our study reveals additional chlorine species in the atmosphere, providing further insights into atmospheric chlorine cycling in the polar environment.

6.
Environ Sci Technol ; 56(19): 14166-14177, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36126141

RESUMO

Nucleation of neutral iodine particles has recently been found to involve both iodic acid (HIO3) and iodous acid (HIO2). However, the precise role of HIO2 in iodine oxoacid nucleation remains unclear. Herein, we probe such a role by investigating the cluster formation mechanisms and kinetics of (HIO3)m(HIO2)n (m = 0-4, n = 0-4) clusters with quantum chemical calculations and atmospheric cluster dynamics modeling. When compared with HIO3, we find that HIO2 binds more strongly with HIO3 and also more strongly with HIO2. After accounting for ambient vapor concentrations, the fastest nucleation rate is predicted for mixed HIO3-HIO2 clusters rather than for pure HIO3 or HIO2 ones. Our calculations reveal that the strong binding results from HIO2 exhibiting a base behavior (accepting a proton from HIO3) and forming stronger halogen bonds. Moreover, the binding energies of (HIO3)m(HIO2)n clusters show a far more tolerant choice of growth paths when compared with the strict stoichiometry required for sulfuric acid-base nucleation. Our predicted cluster formation rates and dimer concentrations are acceptably consistent with those measured by the Cosmic Leaving Outdoor Droplets (CLOUD) experiment. This study suggests that HIO2 could facilitate the nucleation of other acids beyond HIO3 in regions where base vapors such as ammonia or amines are scarce.

7.
Talanta ; 249: 123653, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691127

RESUMO

Illegal explosives are a threat to aviation, transport sector, critical infrastructure and generally to public safety. Their detection requires extremely sensitive instruments with efficient workflows that allow large throughput of items. In this study, we built a trace explosives detection instrument that requires minimal sample treatment and reaches ultra-low picogram level detection limits for many common explosives. The instrument is based on thermal desorption of filters, which allows analysis of liquid and solid phase samples, and subsequent selective atmospheric pressure chemical ionization and detection with a mass spectrometer. We performed experiments to scope the optimal ionization chemistry for the system and selected Br- as the reagent ion, and measured the limit of detection for 14 different explosives that were generally in the picogram range. Finally, we demonstrate the usability of the system by sampling air to a filter from a storage room known to contain explosives, from which we detect four different explosives.


Assuntos
Substâncias Explosivas , Pressão Atmosférica , Fenômenos Químicos , Substâncias Explosivas/análise , Indicadores e Reagentes , Espectrometria de Massas/métodos
8.
Anal Chem ; 93(27): 9309-9313, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34197089

RESUMO

Soft X-ray atmospheric pressure photoionization (soft X-ray APPI) as an ionization method in liquid chromatography-mass spectrometry (LC-MS) is presented. The ionization mechanism was examined with selected test compounds in the negative ion mode, using soft X-ray APPI source emitting 4.9 keV photons. Test compounds with an acidic group were ionized by a proton transfer reaction, producing deprotonated molecules ([M - H]-), whereas compounds having positive electron affinity were ionized by a charge exchange reaction, producing negative molecular ions (M-•). Soft X-ray APPI does not require a dopant to achieve high ionization efficiency, which is an advantage compared with vacuum ultraviolet APPI with 10 eV photons, in which a dopant is needed to improve ionization efficiency. The energy of the soft X-ray photons is in the keV range, which is high enough to displace a valence electron and often also inner shell electrons from LC eluents and atmospheric gases, initiating an efficient ionization process in the negative ion mode.


Assuntos
Pressão Atmosférica , Cromatografia Líquida , Íons , Espectrometria de Massas , Raios X
9.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33479177

RESUMO

Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.e., iodine monochloride [ICl] and iodine monobromide [IBr]) in a midlatitude coastal environment. Significant levels of ICl and IBr with mean daily maxima of 4.3 and 3.0 parts per trillion by volume (1-min average), respectively, have been observed throughout the campaign. We show that the heterogeneous reaction of HOI on marine aerosol and subsequent production of iodine interhalogens are much faster than previously thought. These results indicate that the fast formation of iodine interhalogens, together with their rapid photolysis, results in more efficient recycling of atomic iodine than currently considered in models. Photolysis of the observed ICl and IBr leads to a 32% increase in the daytime average of atomic iodine production rate, thereby enhancing the average daytime iodine-catalyzed ozone loss rate by 10 to 20%. Our findings provide direct field evidence that the autocatalytic mechanism of iodine release from marine aerosol is important in the atmosphere and can have significant impacts on atmospheric oxidation capacity.

10.
Science ; 361(6399): 278-281, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30026225

RESUMO

Atmospheric new particle formation (NPF) is an important global phenomenon that is nevertheless sensitive to ambient conditions. According to both observation and theoretical arguments, NPF usually requires a relatively high sulfuric acid (H2SO4) concentration to promote the formation of new particles and a low preexisting aerosol loading to minimize the sink of new particles. We investigated NPF in Shanghai and were able to observe both precursor vapors (H2SO4) and initial clusters at a molecular level in a megacity. High NPF rates were observed to coincide with several familiar markers suggestive of H2SO4-dimethylamine (DMA)-water (H2O) nucleation, including sulfuric acid dimers and H2SO4-DMA clusters. In a cluster kinetics simulation, the observed concentration of sulfuric acid was high enough to explain the particle growth to ~3 nanometers under the very high condensation sink, whereas the subsequent higher growth rate beyond this size is believed to result from the added contribution of condensing organic species. These findings will help in understanding urban NPF and its air quality and climate effects, as well as in formulating policies to mitigate secondary particle formation in China.

11.
Sci Adv ; 4(4): eaar5218, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29707638

RESUMO

A substantial fraction of aerosols, which affect air quality and climate, is formed from gaseous precursors. Highly oxygenated organic molecules (HOMs) are essential to grow the newly formed particles and have been evidenced to initiate ion-induced nucleation in chamber experiments in the absence of sulfuric acid. We investigate this phenomenon in the real atmosphere using an extensive set of state-of-the-art ion and mass spectrometers deployed in a boreal forest environment. We show that within a few hours around sunset, HOMs resulting from the oxidation of monoterpenes are capable of forming and growing ion clusters even under low sulfuric acid levels. In these conditions, we hypothesize that the lack of photochemistry and essential vapors prevents the organic clusters from growing past 6 nm. However, this phenomenon might have been a major source of particles in the preindustrial atmosphere and might also contribute to particle formation in the future and consequently affect the climate.


Assuntos
Atmosfera/análise , Íons/análise , Aerossóis , Poluição do Ar , Clima , Monoterpenos/análise , Oxirredução , Tamanho da Partícula
12.
Sci Rep ; 7: 45707, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374761

RESUMO

Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that this phenomenon had prominent effects on atmospheric on-going NPF. During the eclipse, the sources of aerosol precursor gases, such as sulphuric acid and nitrogen- containing highly oxidised organic compounds, decreased considerably, which was followed by a reduced formation of small clusters and nanoparticles and thus termination of NPF. After the eclipse, aerosol precursor molecule concentrations recovered and re-initiated NPF. Our results provide direct evidence on the key role of the photochemical production of sulphuric acid and highly oxidized organic compounds in maintaining atmospheric NPF. Our results also explain the rare occurrence of this phenomenon under dark conditions, as well as its seemingly weak connection with atmospheric ions.

13.
J Phys Chem A ; 120(51): 10150-10159, 2016 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-27976590

RESUMO

The gas-phase reaction of OH radicals with isoprene has been investigated in an atmospheric pressure flow tube at 293 ± 0.5 K with special attention to the second-generation products. Reaction conditions were optimized to achieve a predominant reaction of RO2 radicals with HO2 radicals. Chemical ionization-atmospheric pressure interface-time-of-flight mass spectrometry served as the analytical technique in order to follow the formation of RO2 radicals and closed-shell products containing at least four O atoms in the molecule. The reaction products were detected as adducts with the reagent ions using acetate, lactate, or nitrate in the ionization process. Observed signals were attributed to a series of C5-products with multiple hydroxy, hydroperoxy, and probably carbonyl groups. H/D exchange experiments supported the product identification. The generation of the detected second-generation products can be mechanistically explained starting from the OH radical reaction of hydroxy hydroperoxide isomers, HO-C5H8-OOH. These isomers represent the dominant products of the initial OH radical attack on isoprene. Dihydroxy dihydroperoxides, (HO)2-C5H8-(OOH)2, were analyzed as the main second-generation products beside the dihydroxy epoxides. A simple kinetic analysis revealed that the observed second-generation products in total (other than dihydroxy epoxides) were formed with an estimated molar yield of 10.0-1.5+2.1 % with respect to converted hydroxy hydroperoxides. A formation yield of 5.8-0.9+1.3 % has been deduced for the main product (HO)2-C5H8-(OOH)2. The detected, highly oxidized isoprene products represent potential secondary organic aerosol precursors. An annual, global (HO)2-C5H8-(OOH)2 formation strength of (16-35) × 106 metric tons is estimated based on product measurements of this study and literature data regarding the formation of the dihydroxy epoxide isomers for an annual isoprene emission of 454 × 106 metric tons of carbon.

14.
Nat Commun ; 7: 13677, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910849

RESUMO

Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth's radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with α- and ß-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere.

15.
Science ; 354(6316): 1119-1124, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789796

RESUMO

Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.

16.
Nature ; 537(7621): 532-534, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27580030

RESUMO

Homogeneous nucleation and subsequent cluster growth leads to the formation of new aerosol particles in the atmosphere. The nucleation of sulfuric acid and organic vapours is thought to be responsible for the formation of new particles over continents, whereas iodine oxide vapours have been implicated in particle formation over coastal regions. The molecular clustering pathways that are involved in atmospheric particle formation have been elucidated in controlled laboratory studies of chemically simple systems, but direct molecular-level observations of nucleation in atmospheric field conditions that involve sulfuric acid, organic or iodine oxide vapours have yet to be reported. Here we present field data from Mace Head, Ireland, and supporting data from northern Greenland and Queen Maud Land, Antarctica, that enable us to identify the molecular steps involved in new particle formation in an iodine-rich, coastal atmospheric environment. We find that the formation and initial growth process is almost exclusively driven by iodine oxoacids and iodine oxide vapours, with average oxygen-to-iodine ratios of 2.4 found in the clusters. On the basis of this high ratio, together with the high concentrations of iodic acid (HIO3) observed, we suggest that cluster formation primarily proceeds by sequential addition of HIO3, followed by intracluster restructuring to I2O5 and recycling of water either in the atmosphere or on dehydration. Our study provides ambient atmospheric molecular-level observations of nucleation, supporting the previously suggested role of iodine-containing species in the formation of new aerosol particles, and identifies the key nucleating compound.

17.
Nat Commun ; 7: 11594, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27197574

RESUMO

The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

18.
J Phys Chem A ; 119(41): 10336-48, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26392132

RESUMO

The gas-phase reaction of ozone with C5-C8 cycloalkenes has been investigated in a free-jet flow system at atmospheric pressure and a temperature of 297 ± 1 K. Highly oxidized RO2 radicals bearing at least 5 O atoms in the molecule and their subsequent reaction products were detected in most cases by means of nitrate-CI-APi-TOF mass spectrometry. Starting from a Criegee intermediate after splitting-off an OH-radical, the formation of these RO2 radicals can be explained via an autoxidation mechanism, meaning RO2 isomerization (ROO → QOOH) and subsequently O2 addition (QOOH + O2 → R'OO). Time-dependent RO2 radical measurements concerning the ozonolysis of cyclohexene indicate rate coefficients of the intramolecular H-shifts, ROO → QOOH, higher than 1 s(-1). The total molar yield of highly oxidized products (predominantly RO2 radicals) from C5-C8 cycloalkenes in air is 4.8-6.0% affected with a calibration uncertainty by a factor of about two. For the most abundant RO2 radical from cyclohexene ozonolysis, O,O-C6H7(OOH)2O2 ("O,O" stands for two O atoms arising from the ozone attack), the determination of the rate coefficients of the reaction with NO2, NO, and SO2 yielded (1.6 ± 0.5) × 10(-12), (3.4 ± 0.9) × 10(-11), and <10(-14) cm(3) molecule(-1) s(-1), respectively. The reaction of highly oxidized RO2 radicals with other peroxy radicals (R'O2) leads to detectable accretion products, RO2 + R'O2 → ROOR' + O2, which allows to acquire information on peroxy radicals not directly measurable with the nitrate ionization technique applied here. Additional experiments using acetate as the charger ion confirm conclusively the existence of highly oxidized RO2 radicals and closed-shell products. Other reaction products, detectable with this ionization technique, give a deeper insight in the reaction mechanism of cyclohexene ozonolysis.

19.
Phys Chem Chem Phys ; 17(30): 19862-73, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26159709

RESUMO

Stabilized Criegee Intermediates (sCIs) have been identified as oxidants of atmospheric trace gases such as SO2, NO2, carboxylic acids or carbonyls. The atmospheric sCI concentrations, and accordingly their importance for trace gas oxidation, are controlled by the rate of the most important loss processes, very likely the unimolecular reactions and the reaction with water vapour (monomer and dimer) ubiquitously present at high concentrations in the troposphere. In this study, the rate coefficients of the unimolecular reaction of the simplest sCI, formaldehyde oxide, CH2OO, and its bimolecular reaction with the water monomer have been experimentally determined at T = (297 ± 1) K and at atmospheric pressure by using a free-jet flow system. CH2OO was produced by the reaction of ozone with C2H4, and CH2OO concentrations were probed indirectly by detecting H2SO4 after titration with SO2. Time-resolved experiments yield a rate coefficient of the unimolecular reaction of k(uni) = (0.19 ± 0.07) s(-1), a value that is supported by quantum-chemical and statistical rate theory calculations as well as by additional measurements performed under CH2OO steady-state conditions. A rate coefficient of k(CH2OO+H2O) = (3.2 ± 1.2) × 10(-16) cm(3) molecule(-1) s(-1) has been determined for sufficiently low H2O concentrations (<10(15) molecule cm(-3)) that allow separation from the CH2OO reaction with the water dimer. In order to evaluate the accuracy of the experimental approach, the rate coefficients of the reactions with acetaldehyde and acetone were reinvestigated. The obtained rate coefficients k(CH2OO+acetald) = (1.7 ± 0.5) × 10(-12) and k(CH2OO+acetone) = (3.4 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) are in good agreement with literature data.

20.
Environ Sci Technol ; 49(17): 10330-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26207427

RESUMO

Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 µg m(-3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases. The SOA formation in this study is separate from previously described isoprene epoxydiol (IEPOX) uptake. Assigning all condensing LVOC signals to 4,3-ISOPOOH oxidation in the chamber study implies a wall-loss corrected non-IEPOX SOA mass yield of ∼4%. By contrast to monoterpene oxidation, in which extremely low volatility VOC (ELVOC) constitute the organic aerosol, in the isoprene system LVOC with saturation concentrations from 10(-2) to 10 µg m(-3) are the main constituents. These LVOC may be important for the growth of nanoparticles in environments with low OA concentrations. LVOC observed in the chamber were also observed in the atmosphere during SOAS-2013 in the Southeastern United States, with the expected diurnal cycle. This previously uncharacterized aerosol formation pathway could account for ∼5.0 Tg yr(-1) of SOA production, or 3.3% of global SOA.


Assuntos
Aerossóis/análise , Butadienos/análise , Hemiterpenos/análise , Peróxido de Hidrogênio/análise , Compostos Orgânicos/análise , Pentanos/análise , Compostos Orgânicos Voláteis/análise , Atmosfera/química , Modelos Teóricos , Óxido Nítrico/química , Oxirredução , Sudeste dos Estados Unidos , Fatores de Tempo , Pressão de Vapor , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...