Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(14): 6282-6288, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38482938

RESUMO

We have used high-pressure synthesis to synthesize samples of Ca2-xMnxTi2O6 double perovskite, where x varies between 0.2 and 1. The synthesized materials were structurally characterized with powder X-ray diffraction (XRD). Rietveld refinement of the XRD patterns was used to study the change from CaTiO3 (x = 0) to the composition CaMnTi2O6 (x = 1) where half of the Ca(II) ions are replaced by smaller Mn(II) ions. We analyzed the peak shapes in the XRD patterns, as well as lattice parameters, and it appears that smooth symmetry change from the centrosymmetric space group Pbnm to the non-centrosymmetric space group P42mc occurs between x = 0.3 and x = 0.5. We also confirmed the centrosymmetric to non-centrosymmetric transition by characterizing the dielectric properties of the materials with ferroelectric measurements.

2.
Adv Sci (Weinh) ; 9(36): e2205485, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36351708

RESUMO

Next-generation, truly soft, and stretchable electronic circuits with material level self-healing functionality require high-performance solution-processable organic conductors capable of autonomously self-healing without external intervention. A persistent challenge is to achieve required performance level as electrical, mechanical, and self-healing properties optimized in tandem are difficult to attain. Here heterogenous multiphase conductor with cocontinuous morphology and macroscale phase separation for ultrafast universally autonomous self-healing with full recovery of pristine tensile and electrical properties in less than 120 and 900 s, respectively, is reported. The multiphase conductor is insensitive to flaws under stretching and achieves a synergistic combination of conductivity up to ≈1.5 S cm-1 , stress at break ≈4 MPa, toughness up to >81 MJ m-3 , and elastic recovery exceeding 2000% strain. Such properties are difficult to achieve simultaneously with any other type of material so far. The solution-processable multiphase conductor offers a paradigm shift for damage tolerant and environmentally resistant soft electronic components and circuits with material level self-healing.

3.
ACS Appl Mater Interfaces ; 10(13): 11048-11055, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29513520

RESUMO

This paper reports the first ultralow sintering temperature (450 °C) cofired multifunctional ceramic substrate based on a commercial lead zirconium titanate (PZ29)-glass composite, which is fabricated by tape casting, isostatic lamination, and sintering. This substrate was prepared from a novel tape casting slurry composition suitable for cofiring at low temperatures with commercial Ag electrodes at 450 °C. The green cast tape and sintered substrate showed a surface roughness of 146 and 355 nm, respectively, suitable for device-level fabrication by postprocessing. Additionally, the ferroelectric and piezoelectric studies disclosed low remnant polarization due to the dielectric glass matrix with average values of piezoelectric coefficient (+ d33) and voltage coefficient (+ g33) of 17 pC/N and 30 mV/N, respectively. The dielectric permittivity and loss value of the sintered substrates were 57.8 and 0.05 respectively, at 2.4 GHz. The variation of relative permittivity on temperature dependence in the range of -40 to 80 °C was about 23%, while the average linear coefficient of thermal expansion was 6.9 ppm/°C in the measured temperature range of 100-300 °C. Moreover, the shelf life of the tape over 28 months was studied through measurement of the stability of the dielectric properties over time. The obtained results open up a new strategy for the fabrication of next-generation low-cost functional ceramic devices prepared at an ultralow temperature in comparison to the high-temperature cofired ceramic and low-temperature cofired ceramic technologies.

4.
ACS Appl Mater Interfaces ; 8(24): 15607-14, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27232271

RESUMO

Self-standing films (45 µm thick) of native cellulose nanofibrils (CNFs) were synthesized and characterized for their piezoelectric response. The surface and the microstructure of the films were evaluated with image-based analysis and scanning electron microscopy (SEM). The measured dielectric properties of the films at 1 kHz and 9.97 GHz indicated a relative permittivity of 3.47 and 3.38 and loss tangent tan Î´ of 0.011 and 0.071, respectively. The films were used as functional sensing layers in piezoelectric sensors with corresponding sensitivities of 4.7-6.4 pC/N in ambient conditions. This piezoelectric response is expected to increase remarkably upon film polarization resulting from the alignment of the cellulose crystalline regions in the film. The CNF sensor characteristics were compared with those of polyvinylidene fluoride (PVDF) as reference piezoelectric polymer. Overall, the results suggest that CNF is a suitable precursor material for disposable piezoelectric sensors, actuators, or energy generators with potential applications in the fields of electronics, sensors, and biomedical diagnostics.


Assuntos
Celulose/química , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Fenômenos Eletromagnéticos , Nanofibras/química , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...