Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Microbiol Spectr ; 12(3): e0383123, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315011

RESUMO

The SARS-CoV-2 XBB is a group of highly immune-evasive lineages of the Omicron variant of concern that emerged by recombining BA.2-descendent lineages and spread worldwide during 2023. In this study, we combine SARS-CoV-2 genomic data (n = 11,065 sequences) with epidemiological data of severe acute respiratory infection (SARI) cases collected in Brazil between October 2022 and July 2023 to reconstruct the space-time dynamics and epidemiologic impact of XBB dissemination in the country. Our analyses revealed that the introduction and local emergence of lineages carrying convergent mutations within the Spike protein, especially F486P, F456L, and L455F, propelled the spread of XBB* lineages in Brazil. The average relative instantaneous reproduction numbers of XBB* + F486P, XBB* + F486P + F456L, and XBB* + F486P + F456L + L455F lineages in Brazil were estimated to be 1.24, 1.33, and 1.48 higher than that of other co-circulating lineages (mainly BQ.1*/BE*), respectively. Despite such a growth advantage, the dissemination of these XBB* lineages had a reduced impact on Brazil's epidemiological scenario concerning previous Omicron subvariants. The peak number of SARI cases from SARS-CoV-2 during the XBB wave was approximately 90%, 80%, and 70% lower than that observed during the previous BA.1*, BA.5*, and BQ.1* waves, respectively. These findings revealed the emergence of multiple XBB lineages with progressively increasing growth advantage, yet with relatively limited epidemiological impact in Brazil throughout 2023. The XBB* + F486P + F456L + L455F lineages stand out for their heightened transmissibility, warranting close monitoring in the months ahead. IMPORTANCE: Brazil was one the most affected countries by the SARS-CoV-2 pandemic, with more than 700,000 deaths by mid-2023. This study reconstructs the dissemination of the virus in the country in the first half of 2023, a period characterized by the dissemination of descendants of XBB.1, a recombinant of Omicron BA.2 lineages evolved in late 2022. The analysis supports that XBB dissemination was marked by the continuous emergence of indigenous lineages bearing similar mutations in key sites of their Spike protein, a process followed by continuous increments in transmissibility, and without repercussions in the incidence of severe cases. Thus, the results suggest that the epidemiological impact of the spread of a SARS-CoV-2 variant is influenced by an intricate interplay of factors that extend beyond the virus's transmissibility alone. The study also underlines the need for SARS-CoV-2 genomic surveillance that allows the monitoring of its ever-shifting composition.


Assuntos
COVID-19 , Humanos , Brasil/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
2.
Vaccine ; 41(44): 6514-6528, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37661534

RESUMO

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged, imposing the need for periodic booster doses. However, whether booster doses should be applied to the entire population or groups, and the booster doses interval, remains unclear. In this study, we evaluated humoral reactivity kinetics from before the first dose to 180 days after the third booster dose in different schedules in a well-controlled health worker cohort. Among the 2,506 employees, the first 500 vaccinated health workers were invited to participate. The third booster dose was administered 8 months after the first dose. Among the invited participants, 470 were included in the study; 258 received inactivated vaccine CoronaVac (VAC group) and 212 received viral vector vaccine ChAdOx1 (AZV group). The groups were homogeneous in terms of age and sex. 347 participants were followed up after the booster dose with AZV or BNT162b2 (Pfizer, BNT group): 63 with VAC/AZV, 117 with VAC/BNT, 72 with the AZV/AZV and 95 with AZV/BNT schedules. Blood samples were collected immediately before, 28 days after each dose and 180 days after the primary vaccination and booster dose. Anti-SARS-CoV-2 antibodies were measured by chemiluminescence and plaque reduction neutralization test (PRNT). Plasma immune mediators were quantified using a multiplex immunoassay. Geometric mean of antibodies increased 28 days after the second dose with 100 % seroconversion rate in both groups and decreased 180 days after the first dose. In the baseline-seropositive VAC group, the levels of plasma immune mediators increased after the second dose. Booster dose was applied at 4-6 months after the primary vaccination. Heterologous booster in VAC or AZV primary vaccinees were effective maintaining the titers of anti-SARS-CoV-2 antibodies even after 6 months of follow-up. The heterologous schedule induced higher and stable antibody reactivity, even after 180 days, protecting to ancestral (Wuhan), Delta, and Omicron variants.

3.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685953

RESUMO

The innate immune system is the first line of defense against pathogens such as the acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The type I-interferon (IFN) response activation during the initial steps of infection is essential to prevent viral replication and tissue damage. SARS-CoV and SARS-CoV-2 can inhibit this activation, and individuals with a dysregulated IFN-I response are more likely to develop severe disease. Several mutations in different variants of SARS-CoV-2 have shown the potential to interfere with the immune system. Here, we evaluated the buffy coat transcriptome of individuals infected with Gamma or Delta variants of SARS-CoV-2. The Delta transcriptome presents more genes enriched in the innate immune response and Gamma in the adaptive immune response. Interactome and enriched promoter analysis showed that Delta could activate the INF-I response more effectively than Gamma. Two mutations in the N protein and one in the nsp6 protein found exclusively in Gamma have already been described as inhibitors of the interferon response pathway. This indicates that the Gamma variant evolved to evade the IFN-I response. Accordingly, in this work, we showed one of the mechanisms that variants of SARS-CoV-2 can use to avoid or interfere with the host Immune system.


Assuntos
COVID-19 , Interferon Tipo I , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Interferon Tipo I/genética , SARS-CoV-2 , Transcriptoma , COVID-19/genética
4.
Vaccine X ; 14: 100343, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37457323

RESUMO

Falsifications related to health technologies-including vaccines-are a growing threat to patient safety and health systems on a global scale and can cause serious harm to the population (especially vulnerable groups). In Brazil, the manufacturing and spread of counterfeit medicines are prevented through joint actions between different government agencies. In this study, we analyzed three cases of influenza vaccines suspected of counterfeiting. The samples were seized by officials and received by the National Institute for Quality Control in Health (INCQS), the national quality control reference laboratory of the Ministry of Health of Brazil, in 2010, 2017, and 2020. We report the results of our analytical investigations and emphasize the importance of strengthening the partnerships between various national agencies. The seized samples were visually inspected, and their information was compared with that of genuine vaccines (as recorded in the INCQS database). The specific analytical tests were based on quality control tests for biological products. Our results confirmed that all seized samples were falsified. We emphasize the importance of fostering international and intra-national collaborations between various national agencies (such as drug regulatory authorities, official laboratories, customs departments, police forces, and civil society). As demonstrated here, such collaborative actions are essential for combating the release of falsified medical products, safeguarding public health, and strengthening health systems.

5.
Microorganisms ; 11(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37317323

RESUMO

Influenza A virus (IAV) infection affects the human respiratory tract, causing an acute and highly contagious disease. Individuals with comorbidities and in the extremes of age are classified as risk groups for serious clinical outcomes. However, part of the severe infections and fatalities are observed among young healthy individuals. Noteworthy, influenza infections lack specific prognostic biomarkers that would predict the disease severity. Osteopontin (OPN) has been proposed as a biomarker in a few human malignancies and its differential modulation has been observed during viral infections. However, OPN expression levels in the primary site of IAV infection have not been previously investigated. Therefore, we evaluated the transcriptional expression patterns of total OPN (tOPN) and its splicing isoforms (OPNa, OPNb, OPNc, OPN4, and OPN5) in 176 respiratory secretion samples collected from human influenza A(H1N1)pdm09 cases and a group of 65 IAV-negative controls. IAV samples were differentially classified according to their disease severity. tOPN was more frequently detected in IAV samples (34.1%) when compared with the negative controls (18.5%) (p < 0.05), as well as in fatal (59.1%) versus non-fatal IAV samples (30.5%) (p < 0.01). OPN4 splice variant transcript was more prevalent in IAV cases (78.4%) than in the negative controls (66.1%) (p = 0.05) and in severe cases (85.7%) in relation to the non-severe ones (69.2%) (p < 0.01). OPN4 detection was also associated with severity symptoms such as dyspnea (p < 0.05), respiratory failure (p < 0.05), and oxygen saturation < 95% (p < 0.05). In addition, the OPN4 expression level was increased in the fatal cases of respiratory samples. Our data indicated that tOPN and OPN4 had a more pronounced expression pattern in IAV respiratory samples, pointing to the potential use of these molecules as biomarkers to evaluate disease outcomes.

6.
Viruses ; 15(5)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37243238

RESUMO

The main objective of this study was to investigate the dynamic of SARS-CoV-2 viral excretion in rectal swab (RS), saliva, and nasopharyngeal swab (NS) samples from symptomatic patients and asymptomatic contacts. In addition, in order to evaluate the replication potential of SARS-CoV-2 in the gastrointestinal (GI) tract and the excretion of infectious SARS-CoV-2 from feces, we investigated the presence of subgenomic nucleoprotein gene (N) mRNA (sgN) in RS samples and cytopathic effects in Vero cell culture. A prospective cohort study was performed to collect samples from symptomatic patients and contacts in Rio de Janeiro, Brazil, from May to October 2020. One hundred and seventy-six patients had samples collected at home visits and/or during the follow up, resulting in a total of 1633 RS, saliva, or NS samples. SARS-CoV-2 RNA was detected in 130 (73.9%) patients who had at least one sample that tested positive for SARS-CoV-2. The presence of replicating SARS-CoV-2 in RS samples, measured by the detection of sgN mRNA, was successfully achieved in 19.4% (6/31) of samples, whilst infectious SARS-CoV-2, measured by the generation of cytopathic effects in cell culture, was identified in only one RS sample. Although rare, our results demonstrated the replication capacity of SARS-CoV-2 in the GI tract, and infectious viruses in one RS sample. There is still a gap in the knowledge regarding SARS-CoV-2 fecal-oral transmission. Additional studies are warranted to investigate fecal or wastewater exposure as a risk factor for transmission in human populations.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/genética , RNA Viral/genética , Brasil/epidemiologia , Estudos Prospectivos
7.
Environ Sci Pollut Res Int ; 30(25): 67368-67377, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37101215

RESUMO

Municipal solid waste leachate-based epidemiology is an alternative viral tracking tool that applies fresh truck leachate as an early warning of public health emergencies. This study aimed to investigate the potential of SARS-CoV-2 surveillance based on solid waste fresh truck leachate. Twenty truck leachate samples were ultracentrifugated, nucleic acid extracted, and real-time RT-qPCR SARS-CoV-2 N1/N2 applied. Viral isolation, variant of concern (N1/N2) inference, and whole genome sequencing were also performed. SARS-CoV-2 was detected on 40% (8/20) of samples, with a concentration from 2.89 to 6.96 RNA Log10 100 mL-1. The attempt to isolate SARS-CoV-2 and recover the whole genome was not successful; however, positive samples were characterized as possible pre-variant of concern (pre-VOC), VOC Alpha (B.1.1.7) and variant of interest Zeta (P.2). This approach revealed an alternative tool to infer SARS-CoV-2 in the environment and may help the management of local surveillance, health, and social policies.


Assuntos
COVID-19 , Humanos , Brasil , SARS-CoV-2 , Resíduos Sólidos
8.
Nat Commun ; 14(1): 2048, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041143

RESUMO

The SARS-CoV-2 variants of concern (VOCs) Delta and Omicron spread globally during mid and late 2021, respectively. In this study, we compare the dissemination dynamics of these VOCs in the Amazonas state, one of Brazil's most heavily affected regions. We sequenced the virus genome from 4128 patients collected in Amazonas between July 1st, 2021, and January 31st, 2022, and investigated the viral dynamics using a phylodynamic approach. The VOCs Delta and Omicron BA.1 displayed similar patterns of phylogeographic spread but different epidemic dynamics. The replacement of Gamma by Delta was gradual and occurred without an upsurge of COVID-19 cases, while the rise of Omicron BA.1 was extremely fast and fueled a sharp increase in cases. Thus, the dissemination dynamics and population-level impact of new SARS-CoV-2 variants introduced in the Amazonian population after mid-2021, a setting with high levels of acquired immunity, greatly vary according to their viral phenotype.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Brasil , Imunidade Adaptativa
9.
Mem Inst Oswaldo Cruz ; 117: e220155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36700580

RESUMO

BACKGROUND: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has become a major concern contributing to increased morbidity and mortality worldwide. OBJECTIVES: Here we describe the replacement of the Gamma variant of concern (VOC) with Delta in the western Brazilian Amazon. METHODS: In this study, we analysed 540 SARS-CoV-2 positive samples determined by qualitative real-time RT-PCR selected in the state of Rondônia between June and December 2021. The positive cohort was sequenced through next-generation sequencing (NGS) and each sample was quantified using real-time RT-qPCR, the whole genome sequence was obtained, SARS-CoV-2 lineages were classified using the system Pango and the maximum likelihood (ML) method was used to conduct phylogenetic analyses. FINDINGS: A total of 540 high-quality genomes were obtained, where the Delta VOC showed the highest prevalence making up 72%, with strain AY.43 being the most abundant, while the Gamma VOC was present in 28%, where the P.1 strain was the most frequent. In this study population, only 32.96% (178/540) had completed the vaccination schedule. MAIN CONCLUSIONS: This study highlighted the presence of Gamma and Delta variants of SARS-CoV-2 in RO. Furthermore, we observed the replacement of the Gamma VOC with the Delta VOC and its lineages.


Assuntos
COVID-19 , Humanos , Brasil/epidemiologia , COVID-19/epidemiologia , Filogenia , SARS-CoV-2/genética
10.
Artigo em Português | LILACS, CONASS, Coleciona SUS, SES-GO | ID: biblio-1451085

RESUMO

Descrever os casos suspeitos de sarampo e rubéola notificados no Sistema de Informação de Agravos de Notificação (Sinan), Brasil, 2007 a 2016. Métodos: Os dados foram extraídos do Sinan, referentes aos anos de 2007 a 2016. As variáveis utilizadas foram os números de notificações de casos de sarampo e rubéola por regiões e ano, idade, sexo, hospitalização, estado gestacional, histórico vacinal, realização de bloqueio vacinal, coletas sorológicas (S1 e S2), sinais e sintomas, investigação adequada, critério de confirmação ou descarte e classificação final do caso. Resultados: Entre 2007 e 2016 houve 127.802 casos suspeitos de sarampo e rubéola notificados. Aproximadamente 92% dos casos foram investigados, a maioria em menores de cinco anos. Os sintomas mais frequentes foram tosse (40%) e coriza (38%). Como instrumento de vigilância foi coletado sangue para confirmação laboratorial em 87% das notificações. A maioria dos casos de sarampo ocorreu entre os anos de 2011 e 2015, relacionados a casos importados, totalizando 1.443 casos; para rubéola, 10.125 casos foram confirmados. Foram descartados 1,3% (1.698/127.802) e 5,1% (6.555/127.802) das notificações de sarampo e rubéola, respectivamente. Foram ignorados 9% (11.523/127.802) para sarampo e 49% (62.978/127.802) para rubéola. Conclusão: A vigilância dos casos de doenças exantemáticas permitiu demonstrar a situação dos casos de doenças exantemáticas circulantes no país como importante ferramenta de saúde pública. O grande número de casos descartados classificados como ignorados merece atenção, no sentido de melhorar o encerramento dos casos suspeitos notificados


To describe the suspected cases of measles and rubella notified in the Notifiable Diseases Information System (Sinan), Brazil, from 2007 to 2016. Methods: Data were extracted from Sinan referring to the years 2007 to 2016. The variables used were the number of notifications of measles and rubella cases by region and year, age, gender, hospitalization, gestational status, vaccination history, vaccination blockade, serological collections (S1 and S2), signs and symptoms, adequate investigation, confirmation criteria or disposal and final case classification. Results: Between 2007 and 2016, there were 127,802 suspected cases of measles and rubella reported. Approximately 92% of cases were investigated, mostly in children under five years of age. The most frequent symptoms were cough (40%) and runny nose (38%). As a surveillance tool, blood was collected for laboratory confirmation in 87% of notifications. Most Measles cases occurred between 2011 and 2015, related to imported cases, totaling 1,443 cases; for Rubella 10,125 cases were confirmed. 1.3% (1,698/127,802) and 5.1% (6,555/127,802) of measles and rubella notifications, respectively, were discarded. 9% (11,523/127,802) for measles and 49% (62,978/127,802) for rubella were ignored. Conclusion: Surveillance of cases of exanthematous diseases allowed demonstrating the situation of cases of exanthematous diseases circulating in the country as an important public health tool. The large number of discarded cases classified as ignored deserves attention, in order to improve the closing of notified suspected cases


Assuntos
Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Rubéola (Sarampo Alemão)/epidemiologia , Exantema , Monitoramento Epidemiológico , Sarampo/epidemiologia , Brasil/epidemiologia , Epidemiologia Descritiva , Cobertura Vacinal , Sistemas de Informação em Saúde/estatística & dados numéricos
11.
Nat Commun ; 13(1): 7003, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385137

RESUMO

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Genoma Viral/genética , COVID-19/epidemiologia , Pandemias , Genômica
12.
Analyst ; 147(24): 5613-5622, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36300735

RESUMO

Two lineages (BA.1 and BA.2) of the Omicron variant are the main ones responsible for the recent COVID-19 pandemic waves worldwide. Monitoring the prevalence and spread of these variants is important as the presence of mutations might lower the efficacy of vaccines and hinder the benefits of monoclonal antibody therapies. Although the need to screen these new lineages is emerging, genetic sequencing is scarce due to its high cost. Alternatively, we propose using reverse transcription loop-mediated isothermal amplification (RT-LAMP) to infer the prevalence of these lineages and aid in genomic surveillance in countries with limited genetic sequencing capacity. For this, we designed specific primers and tested them on a panel of 267 sequenced RNA genomes from different lineages. The test for BA.1 and its descendants showed 96.63% sensitivity, 100% specificity, and 98.85% accuracy, and the test for BA.2 and descendants showed 90.00% sensitivity, 98.85% specificity, and 98.52% accuracy. These results demonstrate the potential of RT-LAMP to be an alternative to help monitor variants, especially in countries with scarce resources.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Colorimetria , Pandemias , COVID-19/diagnóstico , Técnicas de Amplificação de Ácido Nucleico
13.
Front Public Health ; 10: 944277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187691

RESUMO

The influenza A virus (IAV) is of a major public health concern as it causes annual epidemics and has the potential to cause pandemics. At present, the neuraminidase inhibitors (NAIs) are the most widely used anti-influenza drugs, but, more recently, the drug baloxavir marboxil (BXM), a polymerase inhibitor, has also been licensed in some countries. Mutations in the viral genes that encode the antiviral targets can lead to treatment resistance. Worldwide, a low prevalence of antiviral resistant strains has been reported. Despite that, this situation can change rapidly, and resistant strain surveillance is a priority. Thus, the aim of this was to evaluate Brazilian IAVs antiviral resistance from 2017 to 2019 through the identification of viral mutations associated with reduced inhibition of the drugs and by testing the susceptibility of IAV isolates to oseltamivir (OST), the most widely used NAI drug in the country. Initially, we analyzed 282 influenza A(H1N1)pdm09 and 455 A(H3N2) genetic sequences available on GISAID. The amino acid substitution (AAS) NA:S247N was detected in one A(H1N1)pdm09 strain. We also identified NA:I222V (n = 6) and NA:N329K (n = 1) in A(H3N2) strains. In addition, we performed a molecular screening for NA:H275Y in 437 A(H1N1)pdm09 samples, by pyrosequencing, which revealed a single virus harboring this mutation. Furthermore, the determination of OST IC50 values for 222 A(H1N1)pdm09 and 83 A(H3N2) isolates revealed that all isolates presented a normal susceptibility profile to the drug. Interestingly, we detected one A(H3N2) virus presenting with PA:E119D AAS. Moreover, the majority of the IAV sequences had the M2:S31N adamantanes resistant marker. In conclusion, we show a low prevalence of Brazilian IAV strains with NAI resistance markers, in accordance with what is reported worldwide, indicating that NAIs still remain an option for the treatment of influenza infections in Brazil. However, surveillance of influenza resistance should be strengthened in the country for improving the representativeness of investigated viruses and the robustness of the analysis.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Antivirais/farmacologia , Antivirais/uso terapêutico , Brasil/epidemiologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Neuraminidase/genética , Neuraminidase/metabolismo , Neuraminidase/uso terapêutico , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Prevalência , Estações do Ano
14.
Front Med (Lausanne) ; 9: 1008600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36250091

RESUMO

Recombination events have been described in the Coronaviridae family. Since the beginning of the SARS-CoV-2 pandemic, a variable degree of selection pressure has acted upon the virus, generating new strains with increased fitness in terms of viral transmission and antibody scape. Most of the SC2 variants of concern (VOC) detected so far carry a combination of key amino acid changes and indels. Recombination may also reshuffle existing genetic profiles of distinct strains, potentially giving origin to recombinant strains with altered phenotypes. However, co-infection and recombination events are challenging to detect and require in-depth curation of assembled genomes and sequencing reds. Here, we present the molecular characterization of a new SARS-CoV-2 recombinant between BA.1.1 and BA.2.23 Omicron lineages identified in Brazil. We characterized four mutations that had not been previously described in any of the recombinants already identified worldwide and described the likely breaking points. Moreover, through phylogenetic analysis, we showed that the newly named XAG lineage groups in a highly supported monophyletic clade confirmed its common evolutionary history from parental Omicron lineages and other recombinants already described. These observations were only possible thanks to the joint effort of bioinformatics tools auxiliary in genomic surveillance and the manual curation of experienced personnel, demonstrating the importance of genetic, and bioinformatic knowledge in genomics.

15.
Braz J Microbiol ; 53(4): 1959-1967, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149627

RESUMO

The use of oral fluid (OF) samples for serological diagnosis of parvovirus B19 infection during outbreaks of erythema infectiosum had already been demonstrated, but the feasibility of using OF for the characterization of B19 genotypes circulating during outbreaks has not been described. The aim of this study was to assess the use of "in-house" PCR-based assays as a powerful tool for a rapid diagnosis and molecular characterization of B19 strains in OF samples during outbreaks. Paired serum and OF samples collected from anti-B19 IgM-positive patients, during two outbreaks of ertythema infectiosum (1999-2000 and 2004-2005), were tested by conventional (cPCR) and quantitative PCR (qPCR). qPCR was more sensitive than cPCR for detecting B19-DNA in both OF and serum. Overall, OF presented lower viral load (9.97 × 106 UI/mL) than serum (2.42 × 1010 UI/mL) and this difference was statistically significant. All OF samples obtained from patients in the age group < 14 years presented low viral load (< 104 IU/mL). No correlation was found between viral load and the number of days of onset of rash. Sequence analysis from PCR positive OF samples confirmed the circulation of subgenotype 1a (G1a) during these outbreaks. Our findings indicate that PCR-based assays may fail to detect B19-DNA in approximately 50% of OF compared to serum samples. Nevertheless, our study has shown for the first time that the genome sequence of the amplicon from non-invasive clinical sample is useful for molecular genotyping and may be a tool to clarify the genetic diversity of B19 strains circulating in distinct outbreaks.


Assuntos
Eritema Infeccioso , Parvovirus B19 Humano , Humanos , Adolescente , Eritema Infeccioso/epidemiologia , Eritema Infeccioso/diagnóstico , Parvovirus B19 Humano/genética , DNA Viral/genética , DNA Viral/análise , Surtos de Doenças , Reação em Cadeia da Polimerase em Tempo Real , Anticorpos Antivirais
16.
Biol Methods Protoc ; 7(1): bpac021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128169

RESUMO

Serum samples of 20 hospitalized coronavirus disease 2019 (COVID-19) patients from Brazil who were infected by the earlier severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages B.1.1.28 and B.1.1.33, and by the variant of concern (VOC) Gamma (P.1) were tested by plaque reduction neutralization test (PRNT90) with wild isolates of a panel of SARS-CoV-2 lineages, including B.1, Zeta, N.10, and the VOCs Gamma, Alpha, and Delta that emerged in different timeframes of the pandemic. The main objective of this study was to evaluate if the serum of patients infected by earlier lineages was capable to neutralize later emerged VOCs. We also evaluated if the 4-fold difference in PRNT90 titers is a reliable seropositivity criterion to distinguish infections caused by different SARS-CoV-2 lineages. Sera collected between May 2020 and August 2021 from the day of admittance to the hospital to 21 days after diagnostic of patients infected by the two earlier lineages B.1.1.28 and B.1.1.33 presented neutralizing capacity for all challenged VOCs, including Gamma and Delta. Among all variants tested, Delta and N.10 presented the lowest geometric mean of neutralizing antibody titers, and B.1.1.7, presented the highest titers. Four patients infected with Gamma, that emerged in December 2020, presented neutralizing antibodies for B.1, B.1.1.33, and B.1.1.28, its ancestor lineage. All of them had neutralizing antibodies under the level of detection for the VOC Delta. Patients infected by B.1.1.28 presented very similar geometric mean of neutralizing antibody titers for both B.1.1.33 and B.1.1.28. Findings presented here indicate that most patients infected in early stages of COVID-19 pandemic presented neutralizing antibodies capable to neutralize wild types of all later emerged VOCs in Brazil, and that the 4-fold difference in PRNT90 titers is not reliable to distinguish humoral response among different SARS-CoV-2 lineages.

17.
Biomed Res Int ; 2022: 9082455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105941

RESUMO

COVID-19 has a broad spectrum of clinical manifestations, from asymptomatic or mild/moderate symptoms to severe symptoms and death. The mechanisms underlying its clinical evolution are still unclear. Upon SARS-CoV-2 infection, host factors, such as the inflammasome system, are activated by the presence of the virus inside host cells. The search for COVID-19 risk factors is of relevance for clinical management. In this study, we investigated the impact of inflammasome single-nucleotide polymorphisms (SNPs) in SARS-CoV-2-infected individuals with distinct severity profiles at clinical presentation. Patients were divided into two groups according to disease severity at clinical presentation based on the WHO Clinical Progression Scale. Group 1 included patients with mild/moderate disease (WHO < 6; n = 76), and group 2 included patients with severe/critical COVID-19 (WHO ≥ 6; n = 357). Inpatients with moderate to severe/critical profiles were recruited and followed-up at Hospital Center for COVID-19 Pandemic - National Institute of Infectology (INI)/FIOCRUZ, RJ, Brazil, from June 2020 to March 2021. Patients with mild disease were recruited at Oswaldo Cruz Institute (IOC)/FIOCRUZ, RJ, Brazil, in August 2020. Genotyping of 11 inflammasome SNPs was determined by real-time PCR. Protection and risk estimation were performed using unconditional logistic regression models. Significant differences in NLRP3 rs1539019 and CARD8 rs2043211 were observed between the two groups. Protection against disease severity was associated with the A/A genotype (ORadj = 0.36; P = 0.032), allele A (ORadj = 0.93; P = 0.010), or carrier-A (ORadj = 0.45; P = 0.027) in the NLRP3 rs1539019 polymorphism; A/T genotype (ORadj = 0.5; P = 0.045), allele T (ORadj = 0.93; P = 0.018), or carrier-T (ORadj = 0.48; P = 0.029) in the CARD8 rs2043211 polymorphism; and the A-C-G-C-C (ORadj = 0.11; P = 0.018), A-C-G-C-G (ORadj = 0.23; P = 0.003), C-C-G-C-C (ORadj = 0.37; P = 0.021), and C-T-G-A-C (ORadj = 0.04; P = 0.0473) in NLRP3 genetic haplotype variants. No significant associations were observed for the other polymorphisms. To the best of our knowledge, this is the first study demonstrating an association between CARD8 and NLRP3 inflammasome genetic variants and protection against COVID-19 severity, contributing to the discussion of the impact of inflammasomes on COVID-19 outcomes.


Assuntos
COVID-19 , Inflamassomos , Proteínas Reguladoras de Apoptose/genética , Brasil/epidemiologia , Proteínas Adaptadoras de Sinalização CARD/genética , COVID-19/genética , Predisposição Genética para Doença/genética , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Neoplasias/genética , Pandemias , Polimorfismo de Nucleotídeo Único/genética , SARS-CoV-2
18.
Viruses ; 14(7)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35891457

RESUMO

Worldwide, infections by influenza viruses are considered a major public health challenge. In this study, influenza B vaccine mismatches and clinical aspects of Victoria and Yamagata infections in Brazil were assessed. Clinical samples were collected from patients suspected of influenza infection. In addition, sociodemographic, clinical, and epidemiological information were collected by the epidemiological surveillance teams. Influenza B lineages were determined by real-time RT-PCR and/or Sanger sequencing. In addition, putative phylogeny−trait associations were assessed by using the BaTS program after phylogenetic reconstruction by a Bayesian Markov Chain Monte Carlo method (BEAST software package). Over 2010−2020, B/Victoria and B/Yamagata-like lineages co-circulated in almost all seasonal epidemics, with B/Victoria predominance in most years. Vaccine mismatches between circulating viruses and the trivalent vaccine strains occurred in five of the eleven seasons (45.5%). No significant differences were identified in clinical presentation or disease severity caused by both strains, but subjects infected by B/Victoria-like viruses were significantly younger than their B/Yamagata-like counterparts (16.7 vs. 31.4 years, p < 0.001). This study contributes to a better understanding of the circulation patterns and clinical outcomes of B/Victoria- and B/Yamagata-like lineages in Brazil and advocate for the inclusion of a quadrivalent vaccine in the scope of the Brazilian National Immunization Program.


Assuntos
Vacinas contra Influenza , Influenza Humana , Teorema de Bayes , Brasil/epidemiologia , Humanos , Vírus da Influenza B/genética , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Filogenia
19.
Sci Rep ; 12(1): 11500, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798777

RESUMO

Despite the advance of vaccination worldwide, epidemic waves caused by more transmissible and immune evasive genetic variants of SARS-CoV-2 have sustained the ongoing pandemic of COVID-19. Monitoring such variants is expensive, as it usually relies on whole-genome sequencing methods. Therefore, it is necessary to develop alternatives that could help identify samples from specific variants. Reverse transcription loop-mediated isothermal amplification is a method that has been increasingly used for nucleic acid amplification, as it is cheaper and easier to perform when compared to other molecular techniques. As a proof of concept that can help distinguish variants, we present an RT-LAMP assay capable of detecting samples carrying a group of mutations that can be related to specific SARS-CoV-2 lineages, here demonstrated for the Variant of Concern Gamma. We tested 60 SARS-CoV-2 RNA samples extracted from swab samples and the reaction showed a sensitivity of 93.33%, a specificity of 88.89% and a kappa value of 0.822 for samples with a Ct ≤ 22.93. The RT-LAMP assay demonstrated to be useful to distinguish VOC Gamma and may be of particular interest as a screening approach for variants in countries with poor sequencing coverage.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Colorimetria/métodos , Primers do DNA , Humanos , Técnicas de Diagnóstico Molecular/métodos , Mutação , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
20.
iScience ; 25(4): 104156, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35368908

RESUMO

The COVID-19 epidemic in Brazil experienced two major lineage replacements until mid-2021. The first was driven by lineage P.2, in late 2020, and the second by lineage Gamma, in early 2021. To understand how these SARS-CoV-2 lineages spread in Brazil, we analyzed 11,724 genomes collected throughout the country between September 2020 and April 2021. Our findings indicate that lineage P.2 probably emerged in July 2020 in the Rio de Janeiro state and Gamma in November 2020 in the Amazonas state. Both states were the main hubs of viral disseminations to other Brazilian locations. We estimate that Gamma was 1.56-3.06 times more transmissible than P.2 in Rio de Janeiro and that the median effective reproductive number (Re) of Gamma varied according to the geographic context (Re = 1.59-3.55). In summary, our findings support that lineage Gamma was more transmissible and spread faster than P.2 in Brazil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...