Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367912

RESUMO

A sensitive, selective and particularly fast method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for the determination of meloxicam and its main metabolite, 5'-carboxymeloxicam, in oral fluid samples. Meloxicam and its major metabolite were separated using a Shim-Pack XR-ODS 75 L × 2.0 column and C18 pre-column at 40 °C using a mixture of methanol and 10 mM ammonium acetate (80:20, v/v) with an injection flow rate of 0.3 mL/min. The total time of the analytical run was 5 min. Sixteen volunteers had oral fluid samples collected sequentially before and after taking a meloxicam tablet (15 mg) for up to 96 h. With the concentrations obtained, the pharmacokinetic parameters were determined using the Phoenix WinNonlin software. The parameters evaluated for meloxicam and 5'-carboxymeloxicam in the oral fluid samples showed linearity, accuracy, precision, medium-quality control (MQC-78.12 ng/mL), high-quality control (HQC-156.25 ng/mL), lower limits of quantification (LLOQ-0.6103 ng/mL), low-quality control (LQC-2.44 ng/mL), stability and dilution. Prostaglandin E2 (PGE2) was also detected and quantified in the oral fluid samples, demonstrating the possibility of a pharmacokinetic/pharmacodynamic (PK/PD) study with this methodology. All the parameters evaluated in the validation of the methodology in the oral fluid samples proved to be stable and within the possible variations in each of the described parameters. Through the data presented, the possibility of a PK/PD study was demonstrated, detecting and quantifying meloxicam, its main metabolite and PGE2 in oral fluid samples using LC-MS/MS.

2.
PLoS One ; 17(12): e0278411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454922

RESUMO

After performing liquid-liquid extraction with ethyl acetate and HCl, samples from 12 volunteers who performed sequential collections after taking a tablet of naproxen alone (n = 6) or associated with esomeprazole (n = 6) were analyzed in a triple quadrupole mass spectrometer 8040 LC MS/MS Shimadzu. Separation of naproxen and its main metabolite 6-O-desmethylnaproxen was performed in a Shim-Pack XR-ODS 75Lx2.0 column and C18 pre-column at 40°C using a mixture of methanol and ammonium acetate 10 mM (70:30, v/v) with an injection rate of 0.3 ml/min. The total analytical run time for each sample was 5 min. The association of naproxen with esomeprazole take considerably longer time to reach the maximum concentration [Tmax 0.17 h (interquartile range, 0.13-1.95) for naproxen alone and 13.18*h (interquartile range, 10.12-27.15) for naproxen with esomeprazole, p = 0.002], also to be eliminated [T1/2 0.12 h (interquartile range, 0.09-1.35) for naproxen alone and 9.16*h (interquartile range, 7.16-41.40) for naproxen with esomeprazole, p = 0.002] and lower maximum concentrations (Cmax 4.6 ± 2.5 ug/mL for naproxen alone and 2.04 ± 0.78* µg/mL, p = 0.038). The association of naproxen with esomeprazole showed increased values of AUC0-t [82.06* h*µg/mL (interquartile range, 51.90-157.00) with esomeprazole and 2.97 h*µg/mL (interquartile range, 1.82-7.84) naproxen alone, p = 0.002] in drug concentrations in relation to the naproxen tablet alone, probably, such differences are due to the delay in the absorption of naproxen when it is associated with the drug proton pump inhibitor, esomeprazole. As well as reduced values of full clearance when naproxen is combined with esomeprazole (0.07* µg/h (interquartile range, 0.005-0.01) with esomeprazole and 7.29 µg/h (interquartile range, 3.17-16.23) in naproxen alone, p = 0.002). Both naproxen and 6-O-desmethylnaproxen in saliva samples can be effectively quantified using LC-MS/MS, this methodology proved to be rapid, sensitive, accurate and selective for each drug and allows for the analysis of their pharmacokinetic parameters, in both situations.


Assuntos
Esomeprazol , Naproxeno , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Saliva
3.
Metabolites ; 12(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36422246

RESUMO

Polymorphisms in CYP2C9 can significantly interfere with the pharmacokinetic (PK) and pharmacodynamic (PD) parameters of nonsteroidal anti-inflammatory drugs (NSAIDs), including naproxen. The present research aimed to study the PK/PD parameters of naproxen and its metabolite, 6-O-desmethylnaproxen, associated with allelic variations of CYP2C9. In our study, a rapid, selective, and sensitive Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) method was developed and validated for the determination of naproxen and its main metabolite, 6-O-desmethylnaproxen, in oral fluid. Naproxen and its main metabolite were separated using a Shim-Pack XR-ODS 75L × 2.0 column and C18 pre-column at 40 °C using a mixture of methanol and 10 mM ammonium acetate (70:30, v/v), with an injection flow of 0.3 mL/min. The total analytical run time was 3 min. The volunteers, previously genotyped for CYP2C9 (16 ancestral­CYP2C9 *1 and 12 with the presence of polymorphism­CYP2C9 *2 or *3), had their oral fluids collected sequentially before and after taking a naproxen tablet (500 mg) at the following times: 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6 8, 11, 24, 48, 72 and 96 h. Significant differences in the PK parameters (* p < 0.05) of naproxen in the oral fluid were: Vd/F (L): 98.86 (55.58−322.07) and 380.22 (261.84−1097.99); Kel (1/h): 0.84 (0.69−1.34) and 1.86 (1.09−4.06), in ancestral and mutated CYP2C9 *2 and/or *3, respectively. For 6-O-desmethylnaproxen, no PK parameters were significantly different between groups. The analysis of prostaglandin E2 (PGE2) proved to be effective and sensitive for PD parameters analysis and showed higher levels in the mutated group (p < 0.05). Both naproxen and its main metabolite, 6-O-desmethylnaproxen, and PGE2 in oral fluid can be effectively quantified using LC-MS/MS after a 500 mg oral dose of naproxen. Our method proved to be effective and sensitive to determine the lower limit of quantification of naproxen and its metabolite, 6-O-desmethylnaproxen, in oral fluid (2.4 ng/mL). All validation data, such as accuracy, precision, and repeatability intra- and inter-assay, were less than 15%. Allelic variations of CYP2C9 may be considered relevant in the PK of naproxen and its main metabolite, 6-O-desmethylnaproxen.

4.
Prostaglandins Other Lipid Mediat ; 163: 106672, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36108906

RESUMO

The detection of eicosanoids in saliva samples can assist pharmacokinetic/pharmacodynamic studies due to the facility of obtaining samples, minimal discomfort and high adherence of volunteers to the study. The present study enabled determine prostaglandin E2 concentrations in saliva samples, using a microextraction by packed sorbent methodology and subsequent detection in liquid chromatography-tandem mass spectrometry. Twelve volunteers underwent scaling and coronary-radicular polishing of the upper molars and sequential saliva collections: 0.25-96 h after ingestion of a 600 mg ibuprofen tablet, to quantify prostaglandin E2 concentrations. There was an increase in the level of prostaglandin E2 with a significant difference after the dental procedure (0.25 h) compared to 11, 24, 48 and 72 h (*p < 0.05). After taking the drug, these levels begin to decrease up to 5 h, returning to normal in the subsequent hours. The method was developed and validated with linearity between 2.4 and 1250 ng/mL and r2 above 0.9932. The limit of quantitation was about 2.4 ng/mL. The coefficients of variation and the relative standard errors of the accuracy and precision analyzes were < 15%. The proposed extraction and analysis methodology proved to be efficient, fast and promising for pharmacokinetic/pharmacodynamic assays after using anti-inflammatory drugs.


Assuntos
Saliva , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Saliva/química , Microextração em Fase Sólida/métodos , Limite de Detecção , Cromatografia Líquida/métodos , Prostaglandinas
5.
Metabolites ; 12(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36005622

RESUMO

The aim of this study was to carry out a systematic investigation and analysis of different drug extraction methods, specifically non-steroidal anti-inflammatory drugs in biological fluid samples, for Liquid Chromatography in Mass Spectrometry assays (LC-MS/MS). A search was carried out in the main databases between 1999 and 2021, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist. Data were obtained through PubMed, Lilacs, Embase, Scopus, and Web of Science databases using the Boolean operators AND and OR. Studies were pre-selected by title and abstract by two independent reviewers. The selected texts were read in full, and only those that were complete and compatible with the inclusion and exclusion criteria were eligible for this research. A total of 248 references were obtained in the databases. After removing the duplicates and analyzing the titles and abstracts, 79 references were evaluated and passed to the next phase, which comprised the complete reading of the article. A total of 39 publications were eligible for this study. In 52% of the studies, the authors used the liquid-liquid extraction method (LLE), while in 41%, the solid-phase extraction method (SPE) was used. A total of 5% used microextraction methods and 2% used less-conventional techniques. The literature on the main methods used, the LLE and SPE methods, is extensive and consolidated; however, we found other studies that reported modifications of these traditional techniques, which were equally validated for use in LC-MS/MS. From this review, it is concluded that the diversity of techniques, reliability, and practical information about each analytical method used in this study can be adapted to advances in LC-MS/MS techniques; however, more ecological, economic, and sustainable approaches should be explored in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...