Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1124970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960279

RESUMO

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of fermentation kinetics, also playing a major role in the synthesis of fermentative aromas. Fermentation temperature is yet another variable that affects fermentation duration and the production of fermentative aromas in wine. The main objective of this study was thus to evaluate the combined effects of nitrogen addition-at the start of the fermentation process or during the stationary phase-at different fermentation temperatures on both fermentation kinetics and aroma synthesis kinetics. To study the impact of these three parameters simultaneously, we used an innovative transdisciplinary approach associating an online GC-MS system with an original modeling approach: a Box-Behnken experimental design combined with response surface modeling and GAM modeling. Our results indicated that all three factors studied had significant effects on fermentation and aroma production kinetics. These parameters did not impact in the same way the different families of volatile compounds. At first, obtained data showed that reduction of ester accumulation in the liquid phase at high temperature was mainly due to important losses by evaporation but also to modifications of yeast metabolic capabilities to synthetize these compounds. In a noticeable way, optimal temperature changed for liquid accumulation of the two classes of esters-23°C for acetate ester and 18°C for ethyl esters-because biological impact of temperature was different for the two chemical families. Moreover, the study of these three factors simultaneously allowed us to show that propanol is not only a marker of the presence of assimilable nitrogen in the medium but above all a marker of cellular activity. Finally, this work enabled us to gain a deeper understanding of yeast metabolism regulation. It also underlines the possibility to refine the organoleptic profile of a wine by targeting the ideal combination of fermentation temperature with initial and added nitrogen concentrations. Such observation was particularly true for isoamyl acetate for which interactions between the three factors were very strong.

2.
Front Plant Sci ; 11: 01175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072139

RESUMO

The selection of grapevine varieties is considered to be the smartest strategy for adapting the viticulture to climate warming. Present knowledge of the diversity of grape solutes known to be influenced by temperature is too limited to perform genetic improvement strategies. This study aimed to characterize the diversity for major cations (K+, Mg2+, Ca2+, NH4 +) of the Vitis vinifera fruit and their effect on acidity. Two developmental stages were targeted: the end of green growth, when organic acids reach a maximum, and the physiological ripe stage defined by the stopping of solutes and water import at the maximum volume of the berry. Twelve varieties and 21 microvines from the same segregating population were selected from preliminary phenotyping. The concentration of cations depended on the stage of fruit development, the genotype and the environment with GxE effects. In the ripe grape, K+ concentration varied from 28 to 57 mmol.L-1 with other cations being less concentrated. Combined with the variation in organic acids, cation concentration diversity resulted in titratable acidity of the ripe fruit ranging from 38 to 215 meq.L-1. These results open new perspectives for the selection of varieties to mitigate the adverse effects of climate warming on grape quality.

3.
J Agric Food Chem ; 66(24): 6170-6178, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29786425

RESUMO

Determining the gas-liquid partitioning ( Ki) of acetaldehyde during alcoholic fermentation is an important step in the optimization of fermentation control with the aim of minimizing the accumulation of this compound, which is responsible for the undesired attributes of green apples and fresh-cut grass in wines. In this work, the effects of the main fermentation parameters on the Ki of acetaldehyde were assessed. Ki values were found to be dependent on the temperature and composition of the medium. A nonlinear correlation between the evolution of the Ki and fermentation progress was observed, attributable to the strong retention effect of ethanol at low concentrations, and it was demonstrated that the partitioning of this specific molecule was not influenced by the CO2 production rate. A model was developed that quantifies the Ki of acetaldehyde with a very accurate prediction, as the difference between the observed and predicted values did not exceed 9%.


Assuntos
Acetaldeído/análise , Vinho/análise , Acetaldeído/metabolismo , Etanol/análise , Etanol/metabolismo , Fermentação , Malus/química , Malus/metabolismo , Malus/microbiologia , Saccharomyces cerevisiae/metabolismo
4.
Front Plant Sci ; 9: 455, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765379

RESUMO

The wine industry is facing critical issues due to climate changes since production is established on very tight Genotype × Environment interaction bases. While, some cultivation practices may reduce adverse effects of abiotic stresses on the vines, e.g., the use of irrigation to mitigate drought, the deleterious impacts of warming on fruit development are difficult to manage. Elevated temperature alters grapevine fruit growth and composition, with a critical increase of the sugars/organic acids ratio. Select grapes with improved metabolite balances to offset high temperature effects is a valuable option to sustain viticulture. Unfortunately, the lack of knowledge about the genetic diversity for fruit traits impacted by temperature impairs the design of breeding programs. This study aimed to assess the variation in berry volume, main sugars and organic acids amounts in genetic resources. Fruit phenotyping focused on two critical stages of development: the end of green lag phase when organic acidity reaches its maximum, and the ripe stage when sugar unloading and water uptake stop. For that purpose, we studied a panel of 33 genotypes, including 12 grapevine varieties and 21 microvine offspring. To determine the date of sampling for each critical stage, fruit texture and growth were carefully monitored. Analyses at both stages revealed large phenotypic variation for malic and tartaric acids, as well as for sugars and berry size. At ripe stage, fruit fresh weight ranged from 1.04 to 5.25 g and sugar concentration from 751 to 1353 mmol.L-1. The content in organic acids varied both in quantity (from 80 to 361 meq.L-1) and in composition, with malic to tartaric acid ratio ranging from 0.13 to 3.62. At the inter-genotypic level, data showed no link between berry growth and osmoticum accumulation per fruit unit, suggesting that berry water uptake is not dependent only on fruit osmotic potential. Diversity among varieties for berry size, sugar accumulation and malic to tartaric acid ratio could be exploited through cross-breeding. This provides interesting prospects for improving grapevine to mitigate some adverse effects of climate warming on grapevine fruit volume and quality.

5.
Water Res ; 41(13): 2987-95, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17467770

RESUMO

The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptanoïc acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid.


Assuntos
Ácidos Graxos Voláteis/química , Indústria Alimentícia , Resíduos Industriais , Eliminação de Resíduos Líquidos/métodos , Vinho/análise , Biodegradação Ambiental , Reatores Biológicos , Nitratos/química , Odorantes , Fatores de Tempo , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA