Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2309575121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266051

RESUMO

During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particular, abundance fluctuations of different species are found to be correlated, both across time and across communities in metagenomic samples. Reproducing such correlations through appropriate population models remains an open challenge. The present paper tackles this problem and points to sparse species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as a successful ansatz. For this, we design a Bayesian inference algorithm to extract sets of interaction constants able to reproduce empirical probability distributions of pairwise correlations for diverse biomes. Importantly, the inferred models still reproduce well-known single-species macroecological patterns concerning abundance fluctuations across both species and communities. Endorsed by the agreement with the empirically observed phenomenology, our analyses provide insights into the properties of the networks of microbial interactions, revealing that sparsity is a crucial feature.


Assuntos
Microbiota , Teorema de Bayes , Metagenoma , Algoritmos , Metagenômica
2.
Proc Natl Acad Sci U S A ; 120(37): e2217144120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669363

RESUMO

Multiple ecological forces act together to shape the composition of microbial communities. Phyloecology approaches-which combine phylogenetic relationships between species with community ecology-have the potential to disentangle such forces but are often hard to connect with quantitative predictions from theoretical models. On the other hand, macroecology, which focuses on statistical patterns of abundance and diversity, provides natural connections with theoretical models but often neglects interspecific correlations and interactions. Here, we propose a unified framework combining both such approaches to analyze microbial communities. In particular, by using both cross-sectional and longitudinal metagenomic data for species abundances, we reveal the existence of an empirical macroecological law establishing that correlations in species-abundance fluctuations across communities decay from positive to null values as a function of phylogenetic dissimilarity in a consistent manner across ecologically distinct microbiomes. We formulate three variants of a mechanistic model-each relying on alternative ecological forces-that lead to radically different predictions. From these analyses, we conclude that the empirically observed macroecological pattern can be quantitatively explained as a result of shared population-independent fluctuating resources, i.e., environmental filtering and not as a consequence of, e.g., species competition. Finally, we show that the macroecological law is also valid for temporal data of a single community and that the properties of delayed temporal correlations can be reproduced as well by the model with environmental filtering.


Assuntos
Metagenoma , Microbiota , Filogenia , Estudos Transversais , Metagenômica
3.
PLoS Comput Biol ; 17(9): e1009417, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555011

RESUMO

Ecological and evolutionary dynamics have been historically regarded as unfolding at broadly separated timescales. However, these two types of processes are nowadays well-documented to intersperse much more tightly than traditionally assumed, especially in communities of microorganisms. Advancing the development of mathematical and computational approaches to shed novel light onto eco-evolutionary problems is a challenge of utmost relevance. With this motivation in mind, here we scrutinize recent experimental results showing evidence of rapid evolution of tolerance by lag in bacterial populations that are periodically exposed to antibiotic stress in laboratory conditions. In particular, the distribution of single-cell lag times-i.e., the times that individual bacteria from the community remain in a dormant state to cope with stress-evolves its average value to approximately fit the antibiotic-exposure time. Moreover, the distribution develops right-skewed heavy tails, revealing the presence of individuals with anomalously large lag times. Here, we develop a parsimonious individual-based model mimicking the actual demographic processes of the experimental setup. Individuals are characterized by a single phenotypic trait: their intrinsic lag time, which is transmitted with variation to the progeny. The model-in a version in which the amplitude of phenotypic variations grows with the parent's lag time-is able to reproduce quite well the key empirical observations. Furthermore, we develop a general mathematical framework allowing us to describe with good accuracy the properties of the stochastic model by means of a macroscopic equation, which generalizes the Crow-Kimura equation in population genetics. Even if the model does not account for all the biological mechanisms (e.g., genetic changes) in a detailed way-i.e., it is a phenomenological one-it sheds light onto the eco-evolutionary dynamics of the problem and can be helpful to design strategies to hinder the emergence of tolerance in bacterial communities. From a broader perspective, this work represents a benchmark for the mathematical framework designed to tackle much more general eco-evolutionary problems, thus paving the road to further research avenues.


Assuntos
Fenômenos Fisiológicos Bacterianos , Modelos Biológicos , Adaptação Fisiológica , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Evolução Biológica , Variação Biológica da População , Biologia Computacional , Simulação por Computador , Tolerância a Medicamentos , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Fenótipo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...