Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2490, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291230

RESUMO

Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , Envelhecimento/genética , Envelhecimento/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
2.
Front Neurol ; 8: 255, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634469

RESUMO

BACKGROUND: Alexander disease (AxD) is a rare disease caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). The disease is characterized by presence of GFAP aggregates in the cytoplasm of astrocytes and loss of myelin. OBJECTIVES: Determine the effect of AxD-related mutations on adult neurogenesis. METHODS: We transfected different types of mutant GFAP into neurospheres using the nucleofection technique. RESULTS: We find that mutations may cause coexpression of GFAP and NG2 in neurosphere cultures, which would inhibit the differentiation of precursors into oligodendrocytes and thus explain the myelin loss occurring in the disease. Transfection produces cells that differentiate into new cells marked simultaneously by GFAP and NG2 and whose percentage increased over days of differentiation. Increased expression of GFAP is due to a protein with an anomalous structure that forms aggregates throughout the cytoplasm of new cells. These cells display down-expression of vimentin and nestin. Up-expression of cathepsin D and caspase-3 in the first days of differentiation suggest that apoptosis as a lysosomal response may be at work. HSP27, a protein found in Rosenthal bodies, is expressed less at the beginning of the process although its presence increases in later stages. CONCLUSION: Our findings seem to suggest that the mechanism of development of AxD may not be due to a function gain due to increase of GFAP, but to failure in the differentiation process may occur at the stage in which precursor cells transform into oligodendrocytes, and that possibility may provide the best explanation for the clinical and radiological images described in AxD.

3.
Circulation ; 131(9): 815-26, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25561514

RESUMO

BACKGROUND: Microvascular endothelium in different organs is specialized to fulfill the particular needs of parenchymal cells. However, specific information about heart capillary endothelial cells (ECs) is lacking. METHODS AND RESULTS: Using microarray profiling on freshly isolated ECs from heart, brain, and liver, we revealed a genetic signature for microvascular heart ECs and identified Meox2/Tcf15 heterodimers as novel transcriptional determinants. This signature was largely shared with skeletal muscle and adipose tissue endothelium and was enriched in genes encoding fatty acid (FA) transport-related proteins. Using gain- and loss-of-function approaches, we showed that Meox2/Tcf15 mediate FA uptake in heart ECs, in part, by driving endothelial CD36 and lipoprotein lipase expression and facilitate FA transport across heart ECs. Combined Meox2 and Tcf15 haplodeficiency impaired FA uptake in heart ECs and reduced FA transfer to cardiomyocytes. In the long term, this combined haplodeficiency resulted in impaired cardiac contractility. CONCLUSIONS: Our findings highlight a regulatory role for ECs in FA transfer to the heart parenchyma and unveil 2 of its intrinsic regulators. Our insights could be used to develop new strategies based on endothelial Meox2/Tcf15 targeting to modulate FA transfer to the heart and remedy cardiac dysfunction resulting from altered energy substrate usage.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Células Endoteliais/metabolismo , Proteínas de Ligação a Ácido Graxo/biossíntese , Ácidos Graxos/metabolismo , Proteínas de Homeodomínio/fisiologia , Miocárdio/metabolismo , Tecido Adiposo/irrigação sanguínea , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Antígenos CD36/biossíntese , Antígenos CD36/genética , Baixo Débito Cardíaco/etiologia , Baixo Débito Cardíaco/genética , Baixo Débito Cardíaco/metabolismo , Células Cultivadas , Vasos Coronários/citologia , Proteínas de Ligação a Ácido Graxo/genética , Glucose/metabolismo , Heterozigoto , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Lipase Lipoproteica/biossíntese , Lipase Lipoproteica/genética , Lipoproteínas VLDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/farmacologia , Análise Serial de Tecidos , Transcriptoma
4.
Mol Ther ; 23(1): 130-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25070719

RESUMO

The main objective of this work is to demonstrate the feasibility of using bone marrow-derived stem cells in treating a neurodegenerative disorder such as Friedreich's ataxia. In this disease, the dorsal root ganglia of the spinal cord are the first to degenerate. Two groups of mice were injected intrathecally with mesenchymal stem cells isolated from either wild-type or Fxntm1Mkn/Tg(FXN)YG8Pook (YG8) mice. As a result, both groups presented improved motor skills compared to nontreated mice. Also, frataxin expression was increased in the dorsal root ganglia of the treated groups, along with lower expression of the apoptotic markers analyzed. Furthermore, the injected stem cells expressed the trophic factors NT3, NT4, and BDNF, which bind to sensory neurons of the dorsal root ganglia and increase their survival. The expression of antioxidant enzymes indicated that the stem cell-treated mice presented higher levels of catalase and GPX-1, which are downregulated in the YG8 mice. There were no significant differences in the use of stem cells isolated from wild-type and YG8 mice. In conclusion, bone marrow mesenchymal stem cell transplantation, both autologous and allogeneic, is a feasible therapeutic option to consider in delaying the neurodegeneration observed in the dorsal root ganglia of Friedreich's ataxia patients.


Assuntos
Ataxia de Friedreich/terapia , Gânglios Espinais/patologia , Proteínas de Ligação ao Ferro/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catalase/genética , Catalase/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Gânglios Espinais/metabolismo , Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Injeções Espinhais , Proteínas de Ligação ao Ferro/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Atividade Motora , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Transplante Autólogo , Transplante Homólogo , Glutationa Peroxidase GPX1 , Frataxina
5.
Am J Med Genet A ; 164A(5): 1143-50, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24648371

RESUMO

Osteogenesis imperfecta is a genetic condition characterized by bone fragility and recurrent fractures, which in the large majority of patients are caused by defects in the production of type I collagen. Mutations in the gene encoding bone morphogenetic protein 1 (BMP1, also known as procollagen C-endopeptidase) have been associated with osteogenesis imperfecta in two sib pairs. In this report, we describe an additional patient with osteogenesis imperfecta with normal bone density and a recurrent, homozygous c.34G>C mutation in BMP1. Western blot analysis of dermal fibroblasts from this patient showed decreased protein levels of the two alternatively spliced products of BMP1 and abnormal cleavage of the C-terminal propeptide of type I procollagen. In addition, fluorescence and electron microscopy showed impaired assembly of type I collagen fibrils in the extracellular matrix of cultured fibroblasts derived from two patients: the patient described here and a previously reported patient with a homozygous BMP1 c.747C>G mutation. We conclude that BMP1 is essential for human type I collagen fibrilogenesis.


Assuntos
Proteína Morfogenética Óssea 1/genética , Mutação , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/genética , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Radiografia
6.
Hum Mol Genet ; 22(7): 1300-15, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23257288

RESUMO

Adult neurogenesis, the generation of new neurons during the adulthood, is a process controlled by several kinases and phosphatases among which GSK3ß exerts important functions. This protein is particularly abundant in the central nervous system, and its activity deregulation is believed to play a key role in chronic disorders such as Alzheimer's disease. Previously, we reported that in vivo overexpression of GSK3ß (Tet/GSK3ß mice) causes alterations in adult neurogenesis, leading to a depletion of the neurogenic niches. Here, we have further characterized those alterations, finding a delay in the switching-off of doublecortin marker as well as changes in the survival and death rates of immature precursors and a decrease in the total number of mature neurons. Besides, we have highlighted the importance of the inflammatory environment, identifying eotaxin as a possible modulator of the detrimental effects on adult neurogenesis. Taking advantage of the conditional system, we have also explored whether these negative consequences of increasing GSK3 activity are susceptible to revert after doxycycline treatment. We show that transgene shutdown in symptomatic mice reverts microgliosis, abnormal eotaxin levels as well as the aforementioned alterations concerning immature neurons. Unexpectedly, the decrease in the number of mature neurons and neuronal precursor cells of the subgranular zone of Tet/GSK3ß mice could not be reverted. Thus, alterations in adult neurogenesis and likely in neurodegenerative disorders can be restored in part, although neurogenic niche depletion represents a non-reversible damage persisting during lifetime with a remarkable impact in adult mature neurons.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Neurogênese , Animais , Biomarcadores/metabolismo , Sobrevivência Celular , Quimiocina CCL11/metabolismo , Proteínas de Ligação a DNA , Giro Denteado/citologia , Giro Denteado/enzimologia , Proteínas do Domínio Duplacortina , Indução Enzimática , Genes Reporter , Proteína Glial Fibrilar Ácida/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Células-Tronco Neurais/fisiologia , Neurônios/enzimologia , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Nicho de Células-Tronco , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
7.
Nat Genet ; 43(8): 776-84, 2011 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-21725307

RESUMO

Mutations affecting ciliary components cause ciliopathies. As described here, we investigated Tectonic1 (Tctn1), a regulator of mouse Hedgehog signaling, and found that it is essential for ciliogenesis in some, but not all, tissues. Cell types that do not require Tctn1 for ciliogenesis require it to localize select membrane-associated proteins to the cilium, including Arl13b, AC3, Smoothened and Pkd2. Tctn1 forms a complex with multiple ciliopathy proteins associated with Meckel and Joubert syndromes, including Mks1, Tmem216, Tmem67, Cep290, B9d1, Tctn2 and Cc2d2a. Components of this complex co-localize at the transition zone, a region between the basal body and ciliary axoneme. Like Tctn1, loss of Tctn2, Tmem67 or Cc2d2a causes tissue-specific defects in ciliogenesis and ciliary membrane composition. Consistent with a shared function for complex components, we identified a mutation in TCTN1 that causes Joubert syndrome. Thus, a transition zone complex of Meckel and Joubert syndrome proteins regulates ciliary assembly and trafficking, suggesting that transition zone dysfunction is the cause of these ciliopathies.


Assuntos
Membrana Celular/fisiologia , Cílios/metabolismo , Cílios/patologia , Proteínas de Membrana/fisiologia , Mutação/genética , Anormalidades Múltiplas , Animais , Doenças Cerebelares/genética , Cerebelo/anormalidades , Galinhas , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Anormalidades do Olho/genética , Humanos , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Especificidade de Órgãos , Fragmentos de Peptídeos/imunologia , Doenças Renais Policísticas/genética , Coelhos , Retina/anormalidades , Retinose Pigmentar , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Hum Mol Genet ; 15(23): 3436-45, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17067999

RESUMO

Autosomal dominant lateral temporal epilepsy (ADTLE) is a partial epilepsy caused by mutations in LGI1, a multidomain protein of unknown function. To begin to understand the biological function of LGI1, we have determined its pattern of glycosylation, subcellular expression and capacity for secretion. LGI1 is expressed as two different isoforms in the brain, and we show that the long isoform is a secreted protein, whereas the short isoform is retained in an intracellular pool. ADLTE-related mutants of the long form are defective for secretion and are retained in the endoplasmic reticulum and Golgi complex. Finally, we show that normal secreted LGI1 specifically binds to the cell surface of differentiated PC12 cells. We propose that LGI1 is a secreted factor important for neuronal development and that ADTLE is a disease that results from the loss of regulation in the protein available either extracellular or intracellularly.


Assuntos
Epilepsia do Lobo Temporal/genética , Glicoproteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Animais , Membrana Celular/química , Células Cultivadas , Ativação Enzimática , Glicoproteínas/análise , Glicoproteínas/genética , Glicosilação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células PC12 , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Proteínas/análise , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...