Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768633

RESUMO

Observations of transiting gas giant exoplanets have revealed a pervasive depletion of methane1,2,3,4, which has only recently been identified atmospherically5,6. The depletion is thought to be maintained by disequilibrium processes such as photochemistry or mixing from a hotter interior7,8,9. However, the interiors are largely unconstrained along with the vertical mixing strength and only upper limits on the CH4 depletion have been available. The warm Neptune WASP-107 b stands out among exoplanets with an unusually low density, reported low core mass10, and temperatures amenable to CH4 though previous observations have yet to find the molecule2,4. Here we present a JWST NIRSpec transmission spectrum of WASP-107 b which shows features from both SO2 and CH4 along with H2O, CO2, and CO. We detect methane with 4.2σ significance at an abundance of 1.0±0.5 ppm, which is depleted by 3 orders of magnitude relative to equilibrium expectations. Our results are highly constraining for the atmosphere and interior, which indicate the envelope has a super-solar metallicity of 43±8× solar, a hot interior with an intrinsic temperature of Tint=460±40 K, and vigorous vertical mixing which depletes CH4 with a diffusion coefficient of Kzz = 1011.6±0.1 cm2/s. Photochemistry has a negligible effect on the CH4 abundance, but is needed to account for the SO2. We infer a core mass of 11.5 - 3.6 + 3.0 M⊕, which is much higher than previous upper limits10, releasing a tension with core-accretion models11.

2.
Nature ; 427(6969): 47-50, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14702079

RESUMO

The most massive galaxies and the richest clusters are believed to have emerged from regions with the largest enhancements of mass density relative to the surrounding space. Distant radio galaxies may pinpoint the locations of the ancestors of rich clusters, because they are massive systems associated with 'overdensities' of galaxies that are bright in the Lyman-alpha line of hydrogen. A powerful technique for detecting high-redshift galaxies is to search for the characteristic 'Lyman break' feature in the galaxy colour, at wavelengths just shortwards of Lyalpha, which is due to absorption of radiation from the galaxy by the intervening intergalactic medium. Here we report multicolour imaging of the most distant candidate protocluster, TN J1338-1942 at a redshift z approximately 4.1. We find a large number of objects with the characteristic colours of galaxies at that redshift, and we show that this excess is concentrated around the targeted dominant radio galaxy. Our data therefore indicate that TN J1338-1942 is indeed the most distant cluster progenitor of a rich local cluster, and that galaxy clusters began forming when the Universe was only ten per cent of its present age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...