Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 116: 105532, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995885

RESUMO

Melioidosis is caused by Burkholderia pseudomallei (Bp) acquired from the environment. Conventional identification methods for environmental Bp are challenging due to the presence of closely related species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is accurate for bacterial identification, but has been little used to identify Bp from environmental samples. This study aims to evaluate MALDI-TOF MS for the identification of Bp and closely related species isolated from environmental samples in Thailand using whole-genome sequencing (WGS) as the gold standard, including determining the best sample preparation method for this purpose. We identified Bp (n = 22), Burkholderia spp. (n = 28), and other bacterial species (n = 32) using WGS. MALDI-TOF analysis of all Bp isolates yielded results consistent with WGS. A decision-tree algorithm identified 16 important variable peaks, using the protein extraction method (PEM), demonstrating distinct MALDI-TOF profiles for the three categories (Bp, Burkholderia spp. and "other bacterial species"). Three biomarker peaks (4060, 5196, and 6553 Da) could discriminate Bp from other Burkholderia and closely related species with 100% sensitivity and specificity. Hence, the MALDI-TOF technique has shown its potential as a species discriminatory tool, providing results comparable to WGS for classification and surveillance of environmental Bp.


Assuntos
Burkholderia pseudomallei , Burkholderia , Microbiologia do Solo , Microbiologia da Água , Burkholderia/genética , Burkholderia/química , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tailândia
2.
PLoS One ; 18(11): e0294677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992075

RESUMO

Mycobacterium avium complex (MAC) infections are a significant clinical challenge. Determining drug-susceptibility profiles and the genetic basis of drug resistance is crucial for guiding effective treatment strategies. This study aimed to determine the drug-susceptibility profiles of MAC clinical isolates and to investigate the genetic basis conferring drug resistance using whole-genome sequencing (WGS) analysis. Drug-susceptibility profiles based on minimum inhibitory concentration (MIC) assays were determined for 38 MAC clinical isolates (12 Mycobacterium avium and 26 Mycobacterium intracellulare). Mutations associated with drug resistance were identified through genome analysis of these isolates, and their phylogenetic relationships were also examined. Drug resistance, based on MIC values, was most commonly observed for moxifloxacin (81.6%), followed by linezolid (78.9%), clarithromycin (44.7%) and amikacin (36.8%). We identified specific mutations associated with resistance to amikacin. These include the rrs mutation at C464T in amikacin intermediate-resistance M. avium, and two mutations at T250A and G1453T in amikacin non-susceptible M. intracellulare. Mutations in rrl at A2058G, A2059C and A2059G were potentially linked to clarithromycin resistance. MAC clinical isolates not susceptible to linezolid exhibited mutations in rplC at G237C and C459T, as well as two rplD mutations at G443A and A489G. GyrB substitution Thr521Ala (T521A) was identified in moxifloxacin non-susceptible isolates, which may contribute to this resistance. A phylogeny of our MAC isolates revealed high levels of genetic diversity. Our findings suggest that the standard treatment regimen for MAC infections using moxifloxacin, linezolid, clarithromycin and amikacin may be driving development of resistance, potentially due to specific mutations. The combination of phenotypic and genotypic susceptibility testing can be valuable in guiding the clinical use of drugs for the treatment of MAC infections.


Assuntos
Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare , Humanos , Claritromicina/farmacologia , Amicacina/farmacologia , Moxifloxacina/farmacologia , Linezolida/farmacologia , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/genética , Infecção por Mycobacterium avium-intracellulare/microbiologia , Tailândia , Filogenia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
3.
Curr Microbiol ; 80(10): 335, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665379

RESUMO

Staphylococcus aureus is a serious pathogen that can survive within host cells after a typical course of treatment completion, leading to chronic infection. Knowledge of host proteomic patterns after clearance of this pathogen from cells is limited. Here, we looked for S. aureus clearance biomarkers produced by in vitro-infected leukocytes. Extracellular proteins from primary human leukocytes infected with S. aureus ATCC 25923 were investigated as possible treatment-monitoring clearance biomarkers by applying a proteomics approach combining liquid chromatography with tandem mass spectrometry (LC-MS/MS) and protein interaction network analysis. It was found that the expression patterns of proteins secreted by S. aureus-infected leukocytes differed among stages of infection. Proteomic profiles showed that an ATPase, aminophospholipid transporter-like, Class I, type 8A, member 2 (ATP8A2) was expressed in the clearance stage and was not detected at any earlier stage or in uninfected controls. Protein network analysis showed that TERF2 (telomeric repeat-binding factor 2), ZNF440 (zinc finger protein 440), and PPP1R14A (phosphatase 1 regulatory subunit 14A) were up-regulated, while GLE1, an essential RNA-export mediator, was suppressed in both infection and clearance stages, suggesting their potential roles in S. aureus infection and clearance. These findings are the first to report that the ATP8A2 has potential as a clearance biomarker for S. aureus infection.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Leucócitos , Biomarcadores
4.
Tuberculosis (Edinb) ; 141: 102366, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37379738

RESUMO

Inhalation of Mycobacterium tuberculosis (Mtb) bacilli can lead to a range of TB categories including early clearance (EC), latent TB infection (LTBI) and active TB (ATB). There are few biomarkers available to differentiate among these TB categories: effective new biomarkers are badly needed. Here, we analyzed the serum proteins from 26 ATB cases, 20 LTBI cases, 34 EC cases and 38 healthy controls (HC) using label-free LC-MS/MS. The results were analyzed using MaxQuant software and matched to three different bacterial proteomics databases, including Mtb, Mycobacterium spp. and normal lung flora. PCA of protein candidates using the three proteomics databases revealed 44.5% differentiation power to differentiate among four TB categories. There were 289 proteins that showed potential for distinguishing between each pair of groups among TB categories. There were 50 candidate protein markers specifically found in ATB and LTBI but not in HC and EC groups. Decision trees using the top five candidate biomarkers (A0A1A2RWZ9, A0A1A3FMY8, A0A1A3KIY2, A0A5C7MJH5 and A0A1X0XYR3) had 92.31% accuracy to differentiate among TB categories and the accuracy was increased to 100% when using 10 candidate biomarkers. Our study shows that proteins expressed from Mycobacterium spp. have the potential to be used to differentiate among TB categories.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Tuberculose Latente/microbiologia , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Tuberculose/microbiologia , Biomarcadores
5.
Sci Rep ; 13(1): 8655, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244948

RESUMO

The detection of pre-extensively (pre-XDR) and extensively drug-resistant tuberculosis (XDR-TB) is challenging. Drug-susceptibility tests for some anti-TB drugs, especially ethambutol (ETH) and ethionamide (ETO), are problematic due to overlapping thresholds to differentiate between susceptible and resistant phenotypes. We aimed to identify possible metabolomic markers to detect Mycobacterium tuberculosis (Mtb) strains causing pre-XDR and XDR-TB. The metabolic patterns of ETH- and ETO-resistant Mtb isolates were also investigated. Metabolomics of 150 Mtb isolates (54 pre-XDR, 63 XDR-TB and 33 pan-susceptible; pan-S) were investigated. Metabolomics of ETH and ETO phenotypically resistant subgroups were analyzed using UHPLC-ESI-QTOF-MS/MS. Orthogonal partial least-squares discriminant analysis revealed distinct separation in all pairwise comparisons among groups. Two metabolites (meso-hydroxyheme and itaconic anhydride) were able to differentiate the pre-XDR and XDR-TB groups from the pan-S group with 100% sensitivity and 100% specificity. In comparisons of the ETH and ETO phenotypically resistant subsets, sets of increased (ETH = 15, ETO = 7) and decreased (ETH = 1, ETO = 6) metabolites specific for the resistance phenotype of each drug were found. We demonstrated the potential for metabolomics of Mtb to differentiate among types of DR-TB as well as between isolates that were phenotypically resistant to ETO and ETH. Thus, metabolomics might be further applied for DR-TB diagnosis and patient management.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Espectrometria de Massas em Tandem , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Etionamida , Etambutol/farmacologia , Metaboloma , Testes de Sensibilidade Microbiana
6.
Arch Microbiol ; 204(6): 302, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524014

RESUMO

Our aim was to explore the microbial community composition (bacteria and fungi) of fermented fish (pla-ra) from Northeast Thailand. We also made functional predictions concerning these microbial communities. The association between the microbiota and odor intensity was also analyzed. Fourteen samples of 1-year fermented fish samples derived from seven local markets in Khon Kaen, Northeast Thailand were used. The microbial community composition of each was investigated by sequencing the V1-V9 regions of the 16S rRNA gene (bacteria) and the ITS gene (fungi) using an Illumina MiSeq platform. Functional prediction analysis was conducted through Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) based on the use of the bacterial 16S rRNA gene sequences. The bacterial communities were rich, comprising 402 genera from 28 phyla, including such genera as Tetragenococcus, Staphylococcus, Virgibacillus, Lactobacillus and Lentibacillus. The fungal communities comprised 7 phyla and 60 genera, such as Heterobasidion, Densospora, Exophiala and Monascus. The bacterial community functional analysis revealed an association with six biological metabolic pathway categories (e.g., metabolism, genetic information processing, environmental information processing, cellular processes, organismal systems and human diseases) with 17 subfunctions, showing the richness of bacterial community functions. Odor-association analysis revealed that Brevibacterium, Brachybacterium and Chromohalobacter were more abundant in the weak-odor group, while Noviherbaspirillum was more abundant in the strong-odor group. This study provides a preliminary analysis of pla-ra microbial community structure and function in popular traditional Thai foods. Functional prediction analysis might be helpful to improve our knowledge of the microbiota in fermented fish.


Assuntos
Micobioma , Animais , Bactérias/genética , Fermentação , Peixes/microbiologia , Fungos/genética , Filogenia , RNA Ribossômico 16S/genética , Tailândia
7.
One Health ; 14: 100374, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35198722

RESUMO

The Mycobacterium avium complex (MAC) includes two main species of non-tuberculous mycobacteria (NTM), M. avium and Mycobacterium intracellulare. These can cause serious disease, especially in immunocompromised patients. Little information is available concerning genetic diversity of NTM. We used multilocus sequence typing (MLST) based on a highly discriminative gene set to analyze MAC serially isolated from patients to determine the rate of MAC reinfection. Genomic DNA was sequenced from 49 MAC isolates (15 cases comprised of 11 true infections and 4 instances of colonization). More than half of the MAC isolates tested were found to be multidrug resistant. The discriminatory power was assessed of 24 house-keeping genes (fusA, atpD, pheT, glnA, topA, secA, argH, glpK, murC, cya, pta, rrl, rrs, hsp65, rpoB, 16S-23S rRNA ITS, recF, lipT, pepB, gnd, aspB, groEL, sodA and est) previously used for genotyping of MAC and other NTM. Seven genes (fusA, secA, rpoB, hsp65, 16S rRNA, 23S rRNA, 16S-23S rRNA ITS) had a discriminatory power index higher than 0.9 and were included in the optimized set that we used. This set was significantly better for genotyping and diagnosis of MAC than previously used 4-gene, 5-gene and 9-gene sets. MLST using our 7-gene set indicated that the rate of reinfection was 54.55% (6/11 cases). Persistent infections (n = 5 cases, 45.45%) were found. A changing of clone in the same patient was found in 1/4 (25%) of the colonization cases. Two small clusters of possible MAC transmission between humans were found. Our study demonstrated that the high frequency of apparent treatment failure of MAC might be artefactual, as a consequence of a high rate of MAC reinfection in Thai population. Our useful highly discriminative gene set for MAC species and clonal strain analysis could be further applied for the diagnosis and patient management.

8.
PeerJ ; 9: e12391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760385

RESUMO

BACKGROUND: Infection with Mycobacterium abscessus is usually chronic and is associated with clarithromycin resistance. Increasing drug resistance is a major public-health problem and has led to the search for new antimycobacterial agents. We evaluated the antimycobacterial activity, toxicity, and synergistic effects of several plant secondary metabolites against M. abscessus. METHODS: Twenty-three compounds were evaluated for antimycobacterial activity against thirty M. abscessus clinical isolates by broth microdilution to determine their minimum inhibitory concentration (MIC) values. Toxicity was evaluated using red and white blood cells (RBCs and WBCs). The compounds were used in combination with clarithromycin to investigate the possibility of synergistic activity. RESULTS: Five out of twenty-three compounds (RL008, RL009, RL011, RL012 and RL013) exhibited interesting antimycobacterial activity against M. abscessus, with MIC values ranging from <1 to >128 µg/mL. These extracts did not induce hemolytic effect on RBCs and displayed low toxicity against WBCs. The five least-toxic compounds were tested for synergism with clarithromycin against seven isolates with inducible clarithromycin resistance and seven with acquired clarithromycin resistance. The best synergistic results against these isolates were observed for RL008 and RL009 (8/14 isolates; 57%). CONCLUSIONS: This study demonstrated antimycobacterial and synergistic activities of pure compounds extracted from medicinal plants against clarithromycin-resistant M. abscessus. This synergistic action, together with clarithromycin, may be effective for treating infections and should be further studied for the development of novel antimicrobial agents.

9.
PLoS One ; 16(11): e0260003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780520

RESUMO

Mycobacterium abscessus (Mab) is one of the most drug resistant bacteria with a high treatment failure rate. Antimicrobial peptides (AMPs) are alternative therapeutic agents against this infection. This study was aimed to assess the in vitro activities of thirteen AMPs (S5, S52, S6, S61, S62, S63, KLK, KLK1, KLK2, Pug-1, Pug-2, Pug-3 and Pug-4) that have never been investigated against drug resistant Mab isolates. Only four novel modified AMPs (S61, S62, S63 and KLK1) provided the lowest minimum inhibitory concentration (MIC) values ranging from 200-400 µg/ml against the Mab ATCC19977 strain. These four potential AMPs were further tested with 16 clinical isolates of clarithromycin resistant Mab. The majority of the tested strains (10/16 isolates, 62.5%) showed ~99% kill by all four AMPs within 24 hours with an MIC <50 µg/ml. Only two isolates (12.5%) with acquired clarithromycin resistance, however, exhibited values <50 µg/ml of four potential AMPs, S61, S62, S63 and KLK1 after 3-days-incubation. At the MICs level, S63 showed the lowest toxicity with 1.50% hemolysis and 100% PBMC viability whereas KLK1 showed the highest hemolysis (10.21%) and lowest PBMC viability (93.52%). S61, S62 and S63 were further tested with clarithromycin-AMP interaction assays and found that 5/10 (50%) of selected isolates exhibited a synergistic interaction with 0.02-0.41 FICI values. This present study demonstrated the potential application of novel AMPs as an adjunctive treatment with clarithromycin against drug resistant Mab infection.


Assuntos
Peptídeos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/crescimento & desenvolvimento , Claritromicina/farmacologia , Eritrócitos/efeitos dos fármacos , Genoma Bacteriano , Hemólise , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/genética , Mycobacterium abscessus/isolamento & purificação , Sequenciamento Completo do Genoma
10.
Arch Microbiol ; 203(3): 1159-1166, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33221964

RESUMO

The exploration of vaginal microbiota by using next-generation sequencing (NGS) of 16S ribosomal RNA (rRNA) gene is widely used. Up to now, different hypervariable regions have been selected to study vaginal microbiota by NGS and there is no standard method for analysis. The study aimed to characterize vaginal microbiota from clinical samples using NGS targeting the 16S rRNA gene and to determine the performance of individual and concatenated hypervariable region sequences to generate the taxonomic profiles of the vaginal microbiota. Fifty-one vaginal DNA samples were subjected to 16S rRNA gene NGS based on the Ion Torrent PGM platform with the use of two primer sets spanning seven hypervariable regions of the 16S rRNA gene. Our analysis revealed that the predominant bacterial genera were Lactobacillus, Gardnerella and Atopobium, which accounted for 78%, 14% and 2%, respectively, of sequences from all vaginal bacterial genera. At the species level, Lactobacillus iners, Gardnerella vaginalis and Atopobium vaginae accounted for 72%, 10% and 6%, respectively, of the bacterial cells present. Analyses using the V3 region generally indicated the highest bacterial diversity followed by the V6-V7 and V4 regions, while the V9 region gave the lowest bacterial resolution. NGS based on the 16S rRNA gene can give comprehensive estimates of the diversity of vaginal bacterial communities. Selection of sequences from appropriate hypervariable regions is necessary to provide reliable information on bacterial community diversity.


Assuntos
Bactérias/classificação , Bactérias/genética , Variação Genética , Microbiota/genética , RNA Ribossômico 16S/genética , Vagina/microbiologia , DNA Bacteriano/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
11.
Front Microbiol ; 11: 1438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695087

RESUMO

The spread of antibiotic resistance is a major public health concern worldwide. Commensal bacteria from the human genitourinary tract can act as reservoirs of resistance genes playing a role in their transfer to pathogens. In this study, the minimum inhibitory concentration of 16 antibiotics to 15 isolates from the human vagina, identified as Enterococcus faecalis, Streptococcus anginosus, and Streptococcus salivarius, was determined. Eight isolates were considered resistant to tetracycline, five to clindamycin and quinupristin-dalfopristin, and four to rifampicin. To investigate the presence of antimicrobial resistance genes, PCR analysis was performed in all isolates, and five were subjected to whole-genome sequencing analysis. PCR reactions identified tet(M) in all tetracycline-resistant E. faecalis isolates, while both tet(M) and tet(L) were found in tetracycline-resistant S. anginosus isolates. The tet(M) gene in E. faecalis VA02-2 was carried within an entire copy of the transposon Tn916. In S. anginosus VA01-10AN and VA01-14AN, the tet(M) and tet(L) genes were found contiguous with one another and flanked by genes encoding DNA mobilization and plasmid replication proteins. Amplification and sequencing suggested the lsaA gene to be complete in all E. faecalis isolates resistant to clindamycin and quinupristin-dalfopristin, while the gene contain mutations rendering to a non-functional LsaA in susceptible isolates. These results were subsequently confirmed by genome analysis of clindamycin and quinupristin-dalfopristin resistant and susceptible E. faecalis strains. Although a clinical breakpoint to kanamycin for S. salivarius has yet to be established, S. salivarius VA08-2AN showed an MIC to this antibiotic of 128 µg mL-1. However, genes involved in kanamycin resistance were not identified. Under the assayed conditions, neither tet(L) nor tet(M) from either E. faecalis or S. anginosus was transferred by conjugation to recipient strains of E. faecalis, Lactococcus lactis, or Lactobacillus plantarum. Nonetheless, the tet(L) gene from S. anginosus VA01-10AN was amplified by PCR, and cloned and expressed in Escherichia coli, to which it provided a resistance of 48-64 µg mL-1 to tetracycline. Our results expand the knowledge of the antibiotic resistance-susceptibility profiles of vaginal bacteria and provide the genetic basis of their intrinsic and acquired resistance.

12.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276519

RESUMO

Lactic acid bacteria can act as reservoirs of antibiotic resistance genes that can be ultimately transferred to pathogens. The present work reports on the minimum inhibitory concentration (MIC) of 16 antibiotics to 25 LAB isolates of five Lactobacillus and one Bifidobacterium species from the human vagina. Acquired resistances were detected to kanamycin, streptomycin, chloramphenicol, gentamicin, and ampicillin. A PCR analysis of lactobacilli failed to identify genetic determinants involved in any of these resistances. Surprisingly, a tet(W) gene was detected by PCR in two Bifidobacterium bifidum strains, although they proved to be tetracycline-susceptible. In agreement with the PCR results, no acquired genes were identified in the genome of any of the Lactobacillus spp. strains sequenced. A genome analysis of B. bifidum VA07-1AN showed an insertion of two guanines in the middle of tet(W) interrupting the open reading frame. By growing the strain in the presence of tetracycline, stable tetracycline-resistant variants were obtained. An amino acid substitution in the ribosomal protein S12 (K43R) was further identified as the most likely cause of VA07-1AN being streptomycin resistance. The results of this work expand our knowledge of the resistance profiles of vaginal LAB and provide evidence for the genetic basis of some acquired resistances.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Lactobacillales/fisiologia , Polimorfismo Genético , Vagina/microbiologia , Bifidobacterium bifidum/efeitos dos fármacos , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/fisiologia , Feminino , Humanos , Lactobacillales/efeitos dos fármacos , Lactobacillales/genética , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética , Lactobacillus/fisiologia , Tetraciclina/farmacologia
13.
PeerJ ; 6: e5977, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498641

RESUMO

BACKGROUND: The vaginal microbiota (VMB) plays a key role in women's reproductive health. VMB composition varies with ethnicity, making it necessary to characterize the VMB of the target population before interventions to maintain and/or improve the vaginal health are undertaken. Information on the VMB of Thai women is currently unavailable. We therefore characterized the VMB in normal Thai women. METHODS: Vaginal samples derived from 25 Thai women were subjected to 16S rRNA gene next-generation sequencing (NGS) on the Ion Torrent PGM platform. RESULTS: Two groups of VMB were detected, lactobacilli-dominated (LD) and non-lactobacilli dominated (NLD) groups. Lactobacillus iners was the most common species found in the LD group while Gardnerella vaginalis followed by Atopobium vaginae and Pseudumonas stutzeri were commonly found in the NLD group. CONCLUSIONS: The VMB patterns present in normal Thai women is essential information to further determine the factors associated with VMB patterns in vaginal health and disease and to develop proper management of reproductive health of Thai women.

14.
Diagn Microbiol Infect Dis ; 86(4): 340-344, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27717648

RESUMO

Reduced vancomycin susceptibility of methicillin-resistant Staphylococcus aureus (MRSA) is a worldwide problem. Unfortunately, its genetic marker and molecular mechanisms remained unknown. This study investigated differential phenotypic characteristic and protein expression profiles among three groups of MRSA isolates, including vancomycin-susceptible S. aureus (VSSA), heterogeneous vancomycin-intermediate S. aureus (hVISA) and vancomycin-intermediate S. aureus (VISA) (n = 7 isolates/group). Phenotypic characteristic revealed significant greater number of isolates with non-spreading colony in VISA as compared to both VSSA and hVISA groups. 2-DE followed by nanoLC-MS/MS analyses revealed increased glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in both hVISA and VISA, whereas 50S ribosomal protein L14 (RplN) and DNA-binding protein II (Hup) were increased only in VISA. The non-spreading colony and GAPDH level of MRSA may be used as the markers for differentiation of VSSA, hVISA and VISA.


Assuntos
Staphylococcus aureus Resistente à Meticilina/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteoma/análise , Resistência a Vancomicina , Proteínas de Bactérias/análise , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Humanos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/microbiologia , Espectrometria de Massas em Tandem
15.
Jundishapur J Microbiol ; 9(1): e26069, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27099678

RESUMO

BACKGROUND: Staphylococcus aureus, with reduced vancomycin susceptibility, is probably under the regulation of several genes and various express phenotypes. OBJECTIVES: This study aimed to investigate the phenotypic differences between vancomycin-susceptible S. aureus (VSSA), vancomycin-intermediate S. aureus (VISA), and heterogeneous VISA (hVISA) isolates. MATERIALS AND METHODS: A total of 130 methicillin-resistant S. aureus (MRSA) isolates were studied, including 49 VSSA, 28 hVISA, and 5 VISA isolates from blood cultures and 48 isolates (two VSSA, six hVISA, and 40 VISA) derived in vitro (laboratory-induced/sub-passaged). Their phenotypes were examined using a coagulase tube test, colony spreading on soft agar, and urease activity. The SCCmec and agr typing were performed using multiplex PCR. RESULTS: Most of the MRSA isolates were SCCmec III-agr I (84.5%), followed by SCCmec II-agr II (11.8%). The average plasma coagulation time of vancomycin-non-susceptible isolates was longer than that of the susceptible isolates (12 vs. 2.6 hours). Four hVISA (P = 0.023) and nine VISA (P < 0.001) isolates yielded a negative coagulase test after 24-hour incubation. The percentage of VSSA isolates showing non-spreading colonies (accessory gene regulator (agr) dysfunction) was significantly lower than in the VISA group (P = 0.013), but no significant difference was found between VSSA and hVISA. The VISA group showed higher urease activity than that of the VSSA and hVISA groups (P = 0.002). CONCLUSIONS: There were diverse phenotypic changes among vancomycin-non-susceptible S. aureus isolates. This may be due to the variety of related regulatory systems. The diversity of phenotypic expression may result in its misidentification in routine laboratory checks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...