Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 9(8): 1558-1566, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37637727

RESUMO

Chimeric small molecules that induce post-translational modification (PTM) on a target protein by bringing it into proximity to a PTM-inducing enzyme are furnishing novel modalities to perturb protein function. Despite recent advances, such molecules are unavailable for a critical PTM, tyrosine phosphorylation. Furthermore, the contemporary design paradigm of chimeric molecules, formed by joining a noninhibitory binder of the PTM-inducing enzyme with the binder of the target protein, prohibits the recruitment of most PTM-inducing enzymes as their noninhibitory binders are unavailable. Here, we report two platforms to generate phosphorylation-inducing chimeric small molecules (PHICS) for tyrosine phosphorylation. We generate PHICS from both noninhibitory binders (scantily available, platform 1) and kinase inhibitors (abundantly available, platform 2) using cysteine-based group transfer chemistry. PHICS triggered phosphorylation on tyrosine residues in diverse sequence contexts and target proteins (e.g., membrane-associated, cytosolic) and displayed multiple bioactivities, including the initiation of a growth receptor signaling cascade and the death of drug-resistant cancer cells. These studies provide an approach to induce biologically relevant PTM and lay the foundation for pharmacologic PTM editing (i.e., induction or removal) of target proteins using abundantly available inhibitors of PTM-inducing or -erasing enzymes.

2.
Angew Chem Int Ed Engl ; 61(29): e202202770, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35641438

RESUMO

Phosphorylation-inducing chimeric small molecules (PHICS) can enable a kinase to act at a new cellular location or phosphorylate non-native substrates (neo-substrates)/ sites (neo-phosphorylations).[1, 2] We report a modular design and high-yielding synthesis of such PHICS that endowed multiple new activities to protein kinase C (PKC). For example, while PKC is unable to downregulate the activity of a gain-of-function variant (S180A) of Bruton's tyrosine kinase that evokes B cell malignancy phenotype, PHICS enabled PKC to induce inhibitory neo-phosphorylations on this variant. Furthermore, while PKC typically phosphorylates its membrane-associated substrates, PKC with PHICS phosphorylated multiple cytosol-based neo-substrates (e.g., BCR-ABL). Finally, a PHICS for BCR-ABL induced death of chronic myeloid leukemia cell lines. These studies show the power of synthetic chemistry to expand the chemical and functional diversity of proteins in cells using bifunctional molecules.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Linfócitos B , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Fosforilação , Proteína Quinase C/metabolismo
3.
Curr Opin Chem Biol ; 60: 113-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253976

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system of bacteria has furnished programmable nucleases (e.g., Cas9) that are transforming the field of genome editing with applications in basic and biomedical research, biotechnology, and agriculture. However, broader real-world applications of Cas9 require precision control of its activity over dose, time, and space as off-target effects, embryonic mosaicism, chromosomal translocations, and genotoxicity have been observed with elevated and/or prolonged nuclease activity. Here, we review chemical and optical methods for precision control of Cas9's activity.


Assuntos
Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Fenômenos Ópticos , Edição de Genes , Humanos
4.
NAR Cancer ; 2(4): zcaa033, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33196045

RESUMO

Identifying the mechanisms mediating cisplatin response is essential for improving patient response. Previous research has identified base excision repair (BER) and mismatch repair (MMR) activity in sensitizing cells to cisplatin. Cisplatin forms DNA adducts including interstrand cross-links (ICLs) that distort the DNA helix, forcing adjacent cytosines to become extrahelical. These extrahelical cytosines provide a substrate for cytosine deaminases. Herein, we show that APOBEC3 (A3) enzymes are capable of deaminating the extrahelical cytosines to uracils and sensitizing breast cancer cells to cisplatin. Knockdown of A3s results in resistance to cisplatin and induction of A3 expression in cells with low A3 expression increases sensitivity to cisplatin. We show that the actions of A3s are epistatic with BER and MMR. We propose that A3-induced cytosine deamination to uracil at cisplatin ICLs results in repair of uracils by BER, which blocks ICL DNA repair and enhances cisplatin efficacy and improves breast cancer outcomes.

5.
J Am Chem Soc ; 142(33): 14052-14057, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32787262

RESUMO

Small molecules have been classically developed to inhibit enzyme activity; however, new classes of small molecules that endow new functions to enzymes via proximity-mediated effect are emerging. Phosphorylation (native or neo) of any given protein-of-interest can alter its structure and function, and we hypothesized that such modifications can be accomplished by small molecules that bring a kinase in proximity to the protein-of-interest. Herein, we describe phosphorylation-inducing chimeric small molecules (PHICS), which enable two example kinases-AMPK and PKC-to phosphorylate target proteins that are not otherwise substrates for these kinases. PHICS are formed by linking small-molecule binders of the kinase and the target protein, and exhibit several features of a bifunctional molecule, including the hook-effect, turnover, isoform specificity, dose and temporal control of phosphorylation, and activity dependent on proximity (i.e., linker length). Using PHICS, we were able to induce native and neo-phosphorylations of BRD4 by AMPK or PKC. Furthermore, PHICS induced a signaling-relevant phosphorylation of the target protein Bruton's tyrosine kinase in cells. We envision that PHICS-mediated native or neo-phosphorylations will find utility in basic research and medicine.


Assuntos
Bibliotecas de Moléculas Pequenas/metabolismo , Estrutura Molecular , Fosforilação , Bibliotecas de Moléculas Pequenas/química
7.
Cell ; 177(4): 1067-1079.e19, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051099

RESUMO

The precise control of CRISPR-Cas9 activity is required for a number of genome engineering technologies. Here, we report a generalizable platform that provided the first synthetic small-molecule inhibitors of Streptococcus pyogenes Cas9 (SpCas9) that weigh <500 Da and are cell permeable, reversible, and stable under physiological conditions. We developed a suite of high-throughput assays for SpCas9 functions, including a primary screening assay for SpCas9 binding to the protospacer adjacent motif, and used these assays to screen a structurally diverse collection of natural-product-like small molecules to ultimately identify compounds that disrupt the SpCas9-DNA interaction. Using these synthetic anti-CRISPR small molecules, we demonstrated dose and temporal control of SpCas9 and catalytically impaired SpCas9 technologies, including transcription activation, and identified a pharmacophore for SpCas9 inhibition using structure-activity relationships. These studies establish a platform for rapidly identifying synthetic, miniature, cell-permeable, and reversible inhibitors against both SpCas9 and next-generation CRISPR-associated nucleases.


Assuntos
Proteína 9 Associada à CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , DNA/metabolismo , Endonucleases/metabolismo , Edição de Genes/métodos , Genoma , Bibliotecas de Moléculas Pequenas , Streptococcus pyogenes/genética , Especificidade por Substrato
8.
Mol Cell Biol ; 39(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30348839

RESUMO

Phorbol 12-myristate 13-acetate (PMA) promotes skin cancer in rodents. The mutations found in murine tumors are similar to those found in human skin cancers, and PMA promotes proliferation of human skin cells. PMA treatment of human keratinocytes increases the synthesis of APOBEC3A, an enzyme that converts cytosines in single-stranded DNA to uracil, and mutations in a variety of human cancers are attributed to APOBEC3A or APOBEC3B expression. We tested here the possibility that induction of APOBEC3A by PMA causes genomic accumulation of uracils that may lead to such mutations. When a human keratinocyte cell line was treated with PMA, both APOBEC3A and APOBEC3B gene expression increased, anti-APOBEC3A/APOBEC3B antibody bound a protein(s) in the nucleus, and nuclear extracts displayed cytosine deamination activity. Surprisingly, there was little increase in genomic uracils in PMA-treated wild-type or uracil repair-defective cells. In contrast, cells transfected with a plasmid expressing APOBEC3A acquired more genomic uracils. Unexpectedly, PMA treatment, but not APOBEC3A plasmid transfection, caused a cessation in cell growth. Hence, a reduction in single-stranded DNA at replication forks may explain the inability of PMA-induced APOBEC3A/APOBEC3B to increase genomic uracils. These results suggest that the proinflammatory PMA is unlikely to promote extensive APOBEC3A/APOBEC3B-mediated cytosine deaminations in human keratinocytes.


Assuntos
Citidina Desaminase/efeitos dos fármacos , Antígenos de Histocompatibilidade Menor/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Proteínas/efeitos dos fármacos , Uracila/metabolismo , Carcinógenos/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/genética , Citosina/metabolismo , DNA de Cadeia Simples/efeitos dos fármacos , Genômica , Humanos , Queratinócitos/metabolismo , Mutagênese/efeitos dos fármacos , Neoplasias/genética
9.
Chem Rev ; 116(20): 12688-12710, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27585283

RESUMO

The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.


Assuntos
Citidina Desaminase/metabolismo , DNA/metabolismo , Desaminases APOBEC/metabolismo , Animais , Mamíferos
10.
J Mol Biol ; 427(19): 3042-55, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26281709

RESUMO

Human APOBEC3B deaminates cytosines in DNA and belongs to the AID/APOBEC family of enzymes. These proteins are involved in innate and adaptive immunity and may cause mutations in a variety of cancers. To characterize its ability to convert cytosines into uracils, we tested several derivatives of APOBEC3B gene for their ability to cause mutations in Escherichia coli. Through this analysis, a methionine residue at the junction of the amino-terminal domain (NTD) and the carboxy-terminal domain (CTD) was found to be essential for high mutagenicity. Properties of mutants with substitutions at this position, examination of existing molecular structures of APOBEC3 family members and molecular modeling suggest that this residue is essential for the structural stability of this family of proteins. The APOBEC3B CTD with the highest mutational activity was purified to homogeneity and its kinetic parameters were determined. Size-exclusion chromatography of the CTD monomer showed that it is in equilibrium with its dimeric form and matrix-assisted laser desorption ionization time-of-flight analysis of the protein suggested that the dimer may be quite stable. The partially purified NTD did not show intrinsic deamination activity and did not enhance the activity of the CTD in biochemical assays. Finally, APOBEC3B was at least 10-fold less efficient at mutating 5-methylcytosine (5mC) to thymine than APOBEC3A in a genetic assay and was at least 10-fold less efficient at deaminating 5mC compared to C in biochemical assays. These results shed light on the structural organization of APOBEC3B catalytic domain, its substrate specificity and its possible role in causing genome-wide mutations.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , Metionina/análise , Proteínas/química , Proteínas/metabolismo , 5-Metilcitosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Citidina Desaminase/genética , Citosina/metabolismo , Humanos , Metionina/genética , Metionina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Multimerização Proteica , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...