Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Mol Ecol ; 33(6): e17287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263702

RESUMO

The genomes of cellular organisms display CpG and TpA dinucleotide composition biases. Such biases have been poorly investigated in dsDNA viruses. Here, we show that in dsDNA virus, bacterial, and eukaryotic genomes, the representation of TpA and CpG dinucleotides is strongly dependent on genomic G + C content. Thus, the classical observed/expected ratios do not fully capture dinucleotide biases across genomes. Because a larger portion of the variance in TpA frequency was explained by G + C content, we explored which additional factors drive the distribution of CpG dinucleotides. Using the residuals of the linear regressions as a measure of dinucleotide abundance and ancestral state reconstruction across eukaryotic and prokaryotic virus trees, we identified an important role for phylogeny in driving CpG representation. Nonetheless, phylogenetic ANOVA analyses showed that few host associations also account for significant variations. Among eukaryotic viruses, most significant differences were observed between arthropod-infecting viruses and viruses that infect vertebrates or unicellular organisms. However, an effect of viral DNA methylation status (either driven by the host or by viral-encoded methyltransferases) is also likely. Among prokaryotic viruses, cyanobacteria-infecting phages resulted to be significantly CpG-depleted, whereas phages that infect bacteria in the genera Burkolderia and Staphylococcus were CpG-rich. Comparison with bacterial genomes indicated that this effect is largely driven by the general tendency for phages to resemble the host's genomic CpG content. Notably, such tendency is stronger for temperate than for lytic phages. Our data shed light into the processes that shape virus genome composition and inform manipulation strategies for biotechnological applications.


Assuntos
Genoma Viral , Vírus , Animais , Viés , Metilação de DNA/genética , Genoma Viral/genética , Filogenia , Vírus/genética , Células Procarióticas/química , Células Eucarióticas/química
2.
Front Genet ; 14: 1244983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811140

RESUMO

Optical genome mapping (OGM), which allows analysis of ultra-high molecular weight (UHMW) DNA molecules, represents a response to the restriction created by short-read next-generation-sequencing, even in cases where the causative variant is a neutral copy-number-variant insensitive to quantitative investigations. This study aimed to provide a molecular diagnosis to a boy with Marfan syndrome (MFS) and intellectual disability (ID) carrying a de novo translocation involving chromosomes 3, 4, and 13 and a 1.7 Mb deletion at the breakpoint of chromosome 3. No FBN1 alteration explaining his Marfan phenotype was highlighted. UHMW gDNA was isolated from both the patient and his parents and processed using OGM. Genome assembly was followed by variant calling and annotation. Multiple strategies confirmed the results. The 3p deletion, which disrupted ROBO2, (MIM*602431) included three copy-neutral insertions. Two came from chromosome 13; the third contained 15q21.1, including the FBN1 from intron-45 onwards, thus explaining the MFS phenotype. We could not attribute the ID to a specific gene variant nor to the reshuffling of topologically associating domains (TADs). Our patient did not have vesicular reflux-2, as reported by missense alterations of ROBO2 (VUR2, MIM#610878), implying that reduced expression of all or some isoforms has a different effect than some of the point mutations. Indeed, the ROBO2 expression pattern and its role as an axon-guide suggests that its partial deletion is responsible for the patient's neurological phenotype. Conclusion: OGM testing 1) highlights copy-neutral variants that could remain invisible if no loss of heterozygosity is observed and 2) is mandatory before other molecular studies in the presence of any chromosomal rearrangement for an accurate genotype-phenotype relationship.

3.
Microbiol Spectr ; 11(6): e0252923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800906

RESUMO

IMPORTANCE: Akin to a molecular signature, dinucleotide composition can be exploited by the zinc-finger antiviral protein (ZAP) to restrict CpG-rich (and UpA-rich) RNA viruses. ZAP evolved in tetrapods, and it is not encoded by invertebrates and fish. Because a systematic analysis is missing, we analyzed the genomes of RNA viruses that infect vertebrates or invertebrates. We show that vertebrate single-stranded (ss) RNA(+) viruses and, to a lesser extent, double-stranded RNA viruses tend to have stronger CpG bias than invertebrate viruses. Conversely, ssRNA(-) viruses have similar dinucleotide composition whether they infect vertebrates or invertebrates. Analysis of ssRNA(+) viruses that infect mammals, reptiles, and fish indicated that ZAP is unlikely to be a major driver of CpG depletion. We also show that, compared to other coronaviruses, the genome of SARS-CoV-2 is not homogeneously CpG-depleted. Our study provides new insights into virus evolution and strategies for recoding RNA virus genomes.


Assuntos
Vírus de RNA , Animais , Vírus de RNA/genética , Invertebrados/genética , Vertebrados/genética , SARS-CoV-2/genética , RNA , Mamíferos
4.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792576

RESUMO

Poxviruses (family Poxviridae) have long dsDNA genomes and infect a wide range of hosts, including insects, birds, reptiles and mammals. These viruses have substantial incidence, prevalence and disease burden in humans and in other animals. Nucleotide and dinucleotide composition, mostly CpG and TpA, have been largely studied in viral genomes because of their evolutionary and functional implications. We analysed here the nucleotide and dinucleotide composition, as well as codon usage bias, of a set of representative poxvirus genomes, with a very diverse host spectrum. After correcting for overall nucleotide composition, entomopoxviruses displayed low overall GC content, no enrichment in TpA and large variation in CpG enrichment, while chordopoxviruses showed large variation in nucleotide composition, no obvious depletion in CpG and a weak trend for TpA depletion in GC-rich genomes. Overall, intergenome variation in dinucleotide composition in poxviruses is largely accounted for by variation in overall genomic GC levels. Nonetheless, using vaccinia virus as a model, we found that genes expressed at the earliest times in infection are more CpG-depleted than genes expressed at later stages. This observation has parallels in betahepesviruses (also large dsDNA viruses) and suggests an antiviral role for the innate immune system (e.g. via the zinc-finger antiviral protein ZAP) in the early phases of poxvirus infection. We also analysed codon usage bias in poxviruses and we observed that it is mostly determined by genomic GC content, and that stratification after host taxonomy does not contribute to explaining codon usage bias diversity. By analysis of within-species diversity, we show that genomic GC content is the result of mutational biases. Poxvirus genomes that encode a DNA ligase are significantly AT-richer than those that do not, suggesting that DNA repair systems shape mutation biases. Our data shed light on the evolution of poxviruses and inform strategies for their genetic manipulation for therapeutic purposes.


Assuntos
Poxviridae , Animais , Humanos , Poxviridae/genética , Nucleotídeos , Códon/genética , Evolução Molecular , Mamíferos/genética , Fosfatos de Dinucleosídeos , Antivirais
5.
J Gen Virol ; 104(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37698490

RESUMO

Arenaviridae is a family for ambisense RNA viruses with genomes of about 10.5 kb that infect mammals, snakes, and fish. The arenavirid genome consists of two or three single-stranded RNA segments and encodes a nucleoprotein (NP), a glycoprotein (GP) and a large (L) protein containing RNA-directed RNA polymerase (RdRP) domains; some arenavirids encode a zinc-binding protein (Z). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Arenaviridae, which is available at www.ictv.global/report/arenaviridae.


Assuntos
Arenaviridae , Animais , Arenaviridae/genética , Nucleoproteínas/genética , RNA , RNA Polimerase Dependente de RNA , Mamíferos
6.
Microorganisms ; 11(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512953

RESUMO

The global outbreak of human monkeypox virus (hMPXV1) in 2022 highlighted the usefulness of dermatological manifestations for its diagnosis. Infection by the human monkeypox virus thus necessitated inclusion in the diagnostic repertoire of dermatopathology. To assess the histopathological and microscopical findings of cutaneous lesions related to hMPXV infection, we analyzed skin biopsies from patients with positive MPXV DNA polymerase chain reaction presenting with a typical course of hMPXV1 infection. The most prominent histopathological findings were ascribable to a pustular stage in which epidermal necrosis with areas of non-viable keratinocytes and a "shadow cell" appearance were evident; in some cases, the deep portion of the hair follicle and the acrosyringial epithelium were affected. The main cytopathic modifications included ballooning keratinocytes, followed by Guarnieri bodies and a ground glass appearance of the keratinocytes' nuclei, together with a dense mixed inflammatory cell infiltrate with prominent neutrophil exocytosis. Transmission electron microscopy analysis demonstrated viral particle aggregates in the cytoplasm of keratinocytes, without any involvement of the nucleus. Interestingly, we also found the presence of viral particles in infected mesenchymal cells, although to a lesser extent than in epithelial cells. Through this study, we contributed to expanding the histological and microscopic knowledge of the human mpox virus, a key step to understanding current and potential future trends of the disease, as well as of other Orthopoxvirus infections.

7.
Virus Evol ; 9(1): vead031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305708

RESUMO

In endemic regions (West Africa and the Congo Basin), the genetic diversity of monkeypox virus (MPXV) is geographically structured into two major clades (Clades I and II) that differ in virulence and host associations. Clade IIb is closely related to the B.1 lineage, which is dominating a worldwide outbreak initiated in 2022. Lineage B.1 has however accumulated mutations of unknown significance that most likely result from apolipoprotein B mRNA editing catalytic polypeptide-like 3 (APOBEC3) editing. We applied a population genetics-phylogenetics approach to investigate the evolution of MPXV during historical viral spread in Africa and to infer the distribution of fitness effects. We observed a high preponderance of codons evolving under strong purifying selection, particularly in viral genes involved in morphogenesis and replication or transcription. However, signals of positive selection were also detected and were enriched in genes involved in immunomodulation and/or virulence. In particular, several genes showing evidence of positive selection were found to hijack different steps of the cellular pathway that senses cytosolic DNA. Also, a few selected sites in genes that are not directly involved in immunomodulation are suggestive of antibody escape or other immune-mediated pressures. Because orthopoxvirus host range is primarily determined by the interaction with the host immune system, we suggest that the positive selection signals represent signatures of host adaptation and contribute to the different virulence of Clade I and II MPXVs. We also used the calculated selection coefficients to infer the effects of mutations that define the predominant human MPXV1 (hMPXV1) lineage B.1, as well as the changes that have been accumulating during the worldwide outbreak. Results indicated that a proportion of deleterious mutations were purged from the predominant outbreak lineage, whose spread was not driven by the presence of beneficial changes. Polymorphic mutations with a predicted beneficial effect on fitness are few and have a low frequency. It remains to be determined whether they have any significance for ongoing virus evolution.

8.
iScience ; 26(7): 107118, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37361873

RESUMO

Coronaviruses encode a variable number of accessory proteins that are involved in host-virus interaction, suppression of immune responses, or immune evasion. SARS-CoV-2 encodes at least twelve accessory proteins, whose roles during infection have been studied. Nevertheless, the role of the ORF3c accessory protein, an alternative open reading frame of ORF3a, has remained elusive. Herein, we show that the ORF3c protein has a mitochondrial localization and alters mitochondrial metabolism, inducing a shift from glucose to fatty acids oxidation and enhanced oxidative phosphorylation. These effects result in increased ROS production and block of the autophagic flux. In particular, ORF3c affects lysosomal acidification, blocking the normal autophagic degradation process and leading to autolysosome accumulation. We also observed different effect on autophagy for SARS-CoV-2 and batCoV RaTG13 ORF3c proteins; the 36R and 40K sites are necessary and sufficient to determine these effects.

9.
mSphere ; 8(2): e0006223, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36920219

RESUMO

The ongoing worldwide monkeypox outbreak is caused by viral lineages (globally referred to as hMPXV1) that are related to but distinct from clade IIb MPXV viruses transmitted within Nigeria. Analysis of the genetic differences has indicated that APOBEC-mediated editing might be responsible for the unexpectedly high number of mutations observed in hMPXV1 genomes. Here, using 1,624 publicly available hMPXV1 sequences, we analyzed the mutations that accrued between 2017 and the emergence of the current predominant variant (B.1), as well as those that that have been accumulating during the 2022 outbreak. We confirmed an overwhelming prevalence of C-to-T and G-to-A mutations, with a sequence context (5'-TC-3') consistent with the preferences of several human APOBEC3 enzymes. We also found that mutations preferentially occur in highly expressed viral genes, although no transcriptional asymmetry was observed. A comparison of the mutation spectrum and context was also performed against the human-specific variola virus (VARV) and the zoonotic cowpox virus (CPXV), as well as fowlpox virus (FWPV). The results indicated that in VARV genomes, C-to-T and G-to-A changes were more common than the opposite substitutions, although the effect was less marked than for hMPXV1. Conversely, no preference toward C-to-T and G-to-A changes was observed in CPXV and FWPV. Consistently, the sequence context of C-to-T changes confirmed a preference for a T in the -1 position for VARV, but not for CPXV or FWPV. Overall, our results strongly support the view that, irrespective of the transmission route, orthopoxviruses infecting humans are edited by the host APOBEC3 enzymes. IMPORTANCE Analysis of the viral lineages responsible for the 2022 monkeypox outbreak suggested that APOBEC enzymes are driving hMPXV1 evolution. Using 1,624 public sequences, we analyzed the mutations that accumulated between 2017 and the emergence of the predominant variant and those that characterize the last outbreak. We found that the mutation spectrum of hMPXV1 has been dominated by TC-to-TT and GA-to-AA changes, consistent with the editing activity of human APOBEC3 proteins. We also found that mutations preferentially affect highly expressed viral genes, possibly because transcription exposes single-stranded DNA (ssDNA), a target of APOBEC3 editing. Notably, analysis of the human-specific variola virus (VARV) and the zoonotic cowpox virus (CPXV) indicated that in VARV genomes, TC-to-TT and GA-to-AA changes are likewise extremely frequent. Conversely, no preference toward TC-to-TT and GA-to-AA changes is observed in CPXV. These results suggest that APOBEC3 proteins have an impact on the evolution of different human-infecting orthopoxviruses.


Assuntos
Mpox , Orthopoxvirus , Varíola , Vírus da Varíola , Animais , Humanos , Orthopoxvirus/genética , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/metabolismo , Mutação , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo
10.
Microb Genom ; 9(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748699

RESUMO

Archaeovirology efforts provided a rich portrait of the evolutionary history of variola virus (VARV, the cause of smallpox), which was characterized by lineage extinctions and a relatively recent origin of the virus as a human pathogen (~1700 years ago, ya). This contrasts with historical records suggesting the presence of smallpox as early as 3500 ya. By performing an analysis of ancestry components in modern, historic, and ancient genomes, we unveil the progressive drifting of VARV lineages from a common ancestral population and we show that a small proportion of Viking Age ancestry persisted until the 18th century. After the split of the P-I and P-II lineages, the former experienced a severe bottleneck. With respect to the emergence of VARV as a human pathogen, we revise time estimates by accounting for the time-dependent rate phenomenon. We thus estimate that VARV emerged earlier than 3800 ya, supporting its presence in ancient societies, as pockmarked Egyptian mummies suggest.


Assuntos
Varíola , Vírus da Varíola , Humanos , Vírus da Varíola/genética , Varíola/epidemiologia , Varíola/história , Filogenia , Genoma Viral/genética , Evolução Molecular
11.
J Med Virol ; 95(2): e28493, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633196

RESUMO

The ongoing outbreak of monkeypox virus (hMPXV1) is the largest recorded in historically nonendemic countries. Genomic surveillance has emerged as a pivotal tool to track the spread and monitor the evolution of viral pathogens. Therefore, to assess the genetic diversity of circulating hMPXV1 in northern Italy in June to July 2022, we sequenced and analyzed five complete genomes of viruses sampled from patients presenting with a typical course of hMPXV1 infection. Phylogenetic analysis confirmed that all five genomes belong to the predominant epidemic lineage (B.1). Inspection of genetic changes and comparison with the reference sequence showed the presence of 12 nucleotide substitutions. Seven are nonsynonymous mutations leading to amino acid changes in six proteins belonging to different functional classes. Moreover, 11 of these 12 nucleotide mutations involve GA>AA or TC>TT replacements, suggesting that host APOBEC3 enzymes are responsible for the generation of substitutions in circulating viruses. Finally, metagenomic analysis evidenced bacterial superinfection (Streptococcus pyogenes) in one patient. Through this study, we contributed to expand the number of complete genomes of viruses circulating in Italy and characterize them as belonging to the predominant outbreak lineage.


Assuntos
Genoma Viral , Nucleotídeos , Humanos , Filogenia , Mutação , Sequenciamento Completo do Genoma
12.
Curr Top Microbiol Immunol ; 439: 265-303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592249

RESUMO

Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.


Assuntos
Arenaviridae , Animais , Humanos , Arenaviridae/genética , Arenaviridae/metabolismo , Roedores , Variação Genética
13.
Vaccines (Basel) ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36680007

RESUMO

BACKGROUND: AIM2 is a key cytoplasmatic pathogen-sensor that detects foreign DNA from viruses and bacteria; it can also recognize damaged or anomalous presence of DNA, promoting inflammasome assembly and activation with the secretion of IL-1ß, thus sustaining a chronic inflammatory state, potentially leading to the onset of autoinflammatory skin diseases. Given the implication of the IL-1ß pathway in the pathogenesis of syndromic hidradenitis suppurativa (HS), an autoinflammatory immune-mediated skin condition, the potential involvement of AIM2 was investigated. METHODS: Sequencing of the whole coding region of the AIM2 gene, comprising 5'- and 3' UTR and a region upstream of the first exon of ~800 bp was performed in twelve syndromic HS patients. RESULTS: Six out of twelve syndromic HS patients carried a heterozygous variant c.-208 A ≥ C (rs41264459), located on the promoter region of the AIM2 gene, with a minor allele frequency of 0.25, which is much higher than that reported in 1000 G and GnomAD (0.075 and 0.094, respectively). The same variant was found at a lower allelic frequency in sporadic HS and isolated pyoderma gangrenosum (PG) (0.125 and 0.065, respectively). CONCLUSION: Our data suggest that this variant might play a role in susceptibility to develop syndromic forms of HS but not to progress to sporadic HS and PG. Furthermore, epigenetic and/or somatic variations could affect AIM2 expression leading to different, context-dependent responses.

14.
Virus Res ; 323: 198975, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280003

RESUMO

Orthopoxviruses comprise several relevant pathogens, including the causative agent of smallpox and monkeypox virus. Analysis of orthopoxvirus genome evolution mainly focused on gene gains/losses. We instead analyzed core genes, which are conserved in all orthopoxviruses. We show that, despite their strong constraint, some genes involved in viral morphogenesis and transcription/replication were targets of pervasive positive selection, which was relatively uncommon in immunomodulatory genes. However at least three of the positively selected genes, E3L, A24R, and H3L, might have evolved in response to immune selection. Episodic positive selection was particularly common on the internal branches of the orthopox phylogeny and on the monkeypox virus lineage. The latter showed evidence of episodic positive selection at the D14L gene, which encodes a modulator of complement activation (MOPICE). Notably, two genes (B1R and A33R) targeted by episodic selection on more than one branch are involved in forms of intra-genomic conflict. Finally, we found that, in orthopoxvirus proteomes, intrinsically disordered regions (IDRs) tend to be less constrained and are common targets of positive selection. Extension of our analysis to all poxviruses showed no evidence that the IDR fraction differs with host range. Conversely, we found a strong effect of base composition, which was however not sufficient to explain IDR fraction. We thus suggest that, in poxviruses, the IDR fraction is maintained by modulating GC content to accommodate disorder-promoting codons. Overall, our data provide novel insight in orthopoxvirus evolution and provide a list of genes and sites that are expected to modulate viral phenotypes.

15.
J Infect Dis ; 227(6): 742-751, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35831941

RESUMO

BACKGROUND: Monkeypox is an emerging zoonosis endemic to Central and West Africa. Monkeypox virus (MPXV) is genetically structured in 2 major clades (clades 1 and 2/3), but its evolution is poorly explored. METHODS: We retrieved MPXV genomes from public repositories and we analyzed geographic patterns using STRUCTURE. Molecular dating was performed using a using a Bayesian approach. RESULTS: We show that the population transmitted in West Africa (clades 2/3) experienced limited drift. Conversely, clade 1 (transmitted in the Congo Basin) possibly underwent a bottleneck or founder effect. Depending on the model used, we estimated that the 2 clades separated ∼560-860 (highest posterior density: 450-960) years ago, a period characterized by expansions and contractions of rainforest areas, possibly creating the ecological conditions for the MPXV reservoir(s) to migrate. In the Congo Basin, MPXV diversity is characterized by 4 subpopulations that show no geographic structuring. Conversely, clades 2/3 are spatially structured with 2 populations located West and East of the Dahomey Gap. CONCLUSIONS: The distinct histories of the 2 clades may derive from differences in MPXV ecology in West and Central Africa.


Assuntos
Monkeypox virus , Mpox , Animais , Monkeypox virus/genética , Teorema de Bayes , Mpox/epidemiologia , Mpox/genética , África Ocidental , Zoonoses
16.
Infect Genet Evol ; 105: 105372, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202208

RESUMO

In the last five years, the prevalence of monkeypox has been increasing both in the regions considered endemic for the disease (West and Central Africa) and worldwide. Indeed, in July 2022, the World Health Organization declared the ongoing global outbreak of monkeypox a public health emergency of international concern. The disease is caused by monkeypox virus (MPXV), a member of the Orthopoxvirus genus, which also includes variola virus (the causative agent of smallpox) and vaccinia virus (used in the smallpox eradication campaign). Here, we review aspects of MPXV genetic diversity and epidemiology, with an emphasis on its genome structure, host range, and relationship with other orthopoxviruses. We also summarize the most recent findings deriving from the sequencing of outbreak MPXV genomes, and we discuss the apparent changing of MPXV evolutionary trajectory, which is characterized by the accumulation of point mutations rather than by gene gains/losses. Whereas the availability of a vaccine, the relatively mild presentation of the disease, and its relatively low transmissibility speak in favor of an efficient control of the global outbreak, the wide host range of MPXV raises concerns about the possible establishment of novel reservoirs. We also call for the deployment of field surveys and genomic surveillance programs to identify and control the MPXV reservoirs in West and Central Africa.


Assuntos
Mpox , Varíola , Humanos , Monkeypox virus/genética , Mpox/epidemiologia , África Central
17.
NPJ Vaccines ; 7(1): 92, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953491

RESUMO

Vaccinia virus (VACV) was used for smallpox eradication, but its ultimate origin remains unknown. The genetic relationships among vaccine stocks are also poorly understood. We analyzed 63 vaccine strains with different origin, as well horsepox virus (HPXV). Results indicated the genetic diversity of VACV is intermediate between variola and cowpox viruses, and that mutation contributed more than recombination to VACV evolution. STRUCTURE identified 9 contributing subpopulations and showed that the lowest drift was experienced by the ancestry components of Tian Tan and HPXV/Mütter/Mulford genomes. Subpopulations that experienced very strong drift include those that contributed the ancestry of MVA and IHD-W, in good agreement with the very long passage history of these vaccines. Another highly drifted population contributed the full ancestry of viruses sampled from human/cattle infections in Brazil and, partially, to IOC clones, strongly suggesting that the recurrent infections in Brazil derive from the spillback of IOC to the feral state.

18.
Trends Microbiol ; 30(12): 1232-1242, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35902319

RESUMO

About 270 viruses are known to infect humans. Some of these viruses have been known for centuries, whereas others have recently emerged. During their evolutionary history, humans have moved out of Africa to populate the world. In historical times, human migrations resulted in the displacement of large numbers of people. All these events determined the movement and dispersal of human-infecting viruses. Technological advances have resulted in the characterization of the genetic variability of human viruses, both in extant and in archaeological samples. Field studies investigated the diversity of viruses hosted by other animals. In turn, these advances provided insight into the evolutionary history of human viruses back in time and defined the key events through which they originated and spread.


Assuntos
Evolução Biológica , Vírus , Animais , Humanos , Vírus/genética , África , Filogenia
19.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35731846

RESUMO

Primate herpes simplex viruses are species-specific and relatively harmless to their natural hosts. However, cross-species transmission is often associated with severe disease, as exemplified by the virulence of macacine herpesvirus 1 (B virus) in humans. We performed a genome-wide scan for signals of adaptation of simplexviruses to their hominin hosts. Among core genes, we found evidence of episodic positive selection in three glycoproteins, with several selected sites located in antigenic determinants. Positively selected noncore genes were found to be involved in different immune-escape mechanisms. The herpes simplex virus (HSV)-1/HSV-2 encoded product (ICP47) of one of these genes is known to down-modulate major histocompatibility complex class I expression. This feature is not shared with B virus, which instead up-regulates Human Leukocyte Antigen (HLA)-G, an immunomodulatory molecule. By in vitro expression of different ICP47 mutants, we functionally characterized the selection signals. Results indicated that the selected sites do not represent the sole determinants of binding to the transporter associated with antigen processing (TAP). Conversely, the amino acid status at these sites was sufficient to determine HLA-G up-regulation. In fact, both HSV-1 and HSV-2 ICP47 induced HLA-G when mutated to recapitulate residues in B virus, whereas the mutated version of B virus ICP47 failed to determine HLA-G expression. These differences might contribute to the severity of B virus infection in humans. Importantly, they indicate that the evolution of ICP47 in HSV-1/HSV-2 led to the loss of an immunosuppressive effect. Thus, related simplexviruses finely tune the balance between immunosuppressive and immunostimulatory pathways to promote successful co-existence with their primate hosts.


Assuntos
Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Animais , Apresentação de Antígeno , Antígenos HLA-G , Herpesvirus Humano 1/genética , Herpesvirus Humano 2 , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Virais/genética
20.
Viruses ; 14(5)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35632836

RESUMO

Four endemic coronaviruses infect humans and cause mild symptoms. Because previous analyses were based on a limited number of sequences and did not control for effects that affect molecular dating, we re-assessed the timing of endemic coronavirus emergence. After controlling for recombination, selective pressure, and molecular clock model, we obtained similar tMRCA (time to the most recent common ancestor) estimates for the four coronaviruses, ranging from 72 (HCoV-229E) to 54 (HCoV-NL63) years ago. The split times of HCoV-229E and HCoV-OC43 from camel alphacoronavirus and bovine coronavirus were dated ~268 and ~99 years ago. The split times of HCoV-HKU1 and HCoV-NL63 could not be calculated, as their zoonoticic sources are unknown. To compare the timing of coronavirus emergence to that of another respiratory virus, we recorded the occurrence of influenza pandemics since 1500. Although there is no clear relationship between pandemic occurrence and human population size, the frequency of influenza pandemics seems to intensify starting around 1700, which corresponds with the initial phase of exponential increase of human population and to the emergence of HCoV-229E. The frequency of flu pandemics in the 19th century also suggests that the concurrence of HCoV-OC43 emergence and the Russian flu pandemic may be due to chance.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Influenza Humana , Animais , Bovinos , Coronavirus Humano 229E/genética , Infecções por Coronavirus/epidemiologia , Coronavirus Humano OC43/genética , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...