Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 8668, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875367

RESUMO

Environmental and thermal stability of two-dimensional (2D) transition metal dichalcogenides (TMDs) remains a fundamental challenge towards enabling robust electronic devices. Few-layer 2H-MoTe2 with an amorphous boron nitride (a-BN) covering layer was synthesized as a channel for back-gated field effect transistors (FET) and compared to uncovered MoTe2. A systematic approach was taken to understand the effects of heat treatment in air on the performance of FET devices. Atmospheric oxygen was shown to negatively affect uncoated MoTe2 devices while BN-covered FETs showed considerably enhanced chemical and electronic characteristic stability. Uncapped MoTe2 FET devices, which were heated in air for one minute, showed a polarity switch from n- to p-type at 150 °C, while BN-MoTe2 devices switched only after 200 °C of heat treatment. Time-dependent experiments at 100 °C showed that uncapped MoTe2 samples exhibited the polarity switch after 15 min of heat treatment while the BN-capped device maintained its n-type conductivity for the maximum 60 min duration of the experiment. X-ray photoelectron spectroscopy (XPS) analysis suggests that oxygen incorporation into MoTe2 was the primary doping mechanism for the polarity switch. This work demonstrates the effectiveness of an a-BN capping layer in preserving few-layer MoTe2 material quality and controlling its conductivity type at elevated temperatures in an atmospheric environment.

2.
ACS Nano ; 8(8): 7763-70, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25054222

RESUMO

A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (Al) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (Eto ∼ 0.1 V/µm) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...