Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38956972

RESUMO

BACKGROUND: Currently, there is no effective therapy for takotsubo syndrome (stress-induced cardiac injury in humans) in the clinics. It has previously been shown that ß2-adrenergic receptor (ß2-AR) agonist formoterol reduces cardiomyocyte injury in experimental takotsubo syndrome. OBJECTIVES: The aim of this study was to investigate whether formoterol prevents apoptosis and necrosis of cardiomyocytes and endothelial cells in stress-induced cardiomyopathy. METHODS: Stress-induced cardiac injury was induced by immobilization of rats for 2, 6, and 24 hours. RESULTS: The myocardium of stressed rats showed a reduction in contractility and histological manifestations of cardiomyocyte damage: karyopyknosis, perinuclear edema of cardiomyocytes and endothelial cells, and microcirculation disturbances augmented with extended exposure to stress. In addition, apoptosis of endothelial cells was detected 6 hours after the onset of stress and peaked at 24 hours. Apoptosis of cardiomyocytes significantly gained only after 24 hours of stress exposure. These morphological alterations were associated with increased levels of serum creatine kinase-MB, syndecan-1, and thrombomodulin after 24 hours of stress. Administration of ß2-AR agonist formoterol (50 µg/kg) four times during 24-hour stress exposure led to the improvement in myocardial inotropy, decrease in the severity of histological signatures, reduction in the number of TUNEL-positive cardiomyocytes, serum creatine kinase-MB, syndecan-1, and thrombomodulin levels. CONCLUSION: Present data suggest that apoptosis and necrosis of cardiomyocytes and necrosis of endothelial cells in stress-induced cardiac injury can be mitigated by activation of the ß2-AR. However, formoterol did not eliminate completely cardiomyocyte apoptosis, histological alterations, or endothelium injury markers under stress.

2.
J Biomed Res ; 37(4): 268-280, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37503710

RESUMO

The role of reactive oxygen species (ROS) in ischemic and reperfusion (I/R) injury of the heart has been discussed for more than 40 years. It has been demonstrated that reperfusion triggers a multiple increase in free radical generation in the isolated heart. Antioxidants were found to have the ability to mitigate I/R injury of the heart. However, it is unclear whether their cardioprotective effect truly depends on the decrease of ROS levels in myocardial tissues. Since high doses and high concentrations of antioxidants were experimentally used, it is highly likely that the cardioprotective effect of antioxidants depends on their interaction not only with free radicals but also with other molecules. It has been demonstrated that the antioxidant N-2-mercaptopropionyl glycine or NDPH oxidase knockout abolished the cardioprotective effect of ischemic preconditioning. Consequently, there is evidence that ROS protect the heart against the I/R injury.

3.
Biomedicines ; 11(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37509526

RESUMO

An analysis of published data and the results of our own studies reveal that the activation of a peripheral δ2-opioid receptor (δ2-OR) increases the cardiac tolerance to reperfusion. It has been found that this δ2-OR is localized in cardiomyocytes. Endogenous opioids are not involved in the regulation of cardiac resistance to reperfusion. The infarct-limiting effect of the δ2-OR agonist deltorphin II depends on the activation of several protein kinases, including PKCδ, ERK1/2, PI3K, and PKG. Hypothetical end-effectors of the cardioprotective effect of deltorphin II are the sarcolemmal KATP channels and the MPT pore.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA