Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(2): e1010335, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735746

RESUMO

How cell specification can be controlled in a reproducible manner is a fundamental question in developmental biology. In ascidians, a group of invertebrate chordates, geometry plays a key role in achieving this control. Here, we use mathematical modeling to demonstrate that geometry dictates the neural-epidermal cell fate choice in the 32-cell stage ascidian embryo by a two-step process involving first the modulation of ERK signaling and second, the expression of the neural marker gene, Otx. The model describes signal transduction by the ERK pathway that is stimulated by FGF and attenuated by ephrin, and ERK-mediated control of Otx gene expression, which involves both an activator and a repressor of ETS-family transcription factors. Considering the measured area of cell surface contacts with FGF- or ephrin-expressing cells as inputs, the solutions of the model reproduce the experimental observations about ERK activation and Otx expression in the different cells under normal and perturbed conditions. Sensitivity analyses and computations of Hill coefficients allow us to quantify the robustness of the specification mechanism controlled by cell surface area and to identify the respective role played by each signaling input. Simulations also predict in which conditions the dual control of gene expression by an activator and a repressor that are both under the control of ERK can induce a robust ON/OFF control of neural fate induction.


Assuntos
Urocordados , Animais , Urocordados/genética , Diferenciação Celular , Transdução de Sinais/fisiologia , Sistema Nervoso , Efrinas/genética , Regulação da Expressão Gênica no Desenvolvimento
2.
Dev Cell ; 56(21): 2966-2979.e10, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34672970

RESUMO

Precise control of lineage segregation is critical for the development of multicellular organisms, but our quantitative understanding of how variable signaling inputs are integrated to activate lineage-specific gene programs remains limited. Here, we show how precisely two out of eight ectoderm cells adopt neural fates in response to ephrin and FGF signals during ascidian neural induction. In each ectoderm cell, FGF signals activate ERK to a level that mirrors its cell contact surface with FGF-expressing mesendoderm cells. This gradual interpretation of FGF inputs is followed by a bimodal transcriptional response of the immediate early gene, Otx, resulting in its activation specifically in the neural precursors. At low levels of ERK, Otx is repressed by an ETS family transcriptional repressor, ERF2. Ephrin signals are critical for dampening ERK activation levels across ectoderm cells so that only neural precursors exhibit above-threshold levels, evade ERF repression, and "switch on" Otx transcription.


Assuntos
Padronização Corporal/genética , Desenvolvimento Embrionário/fisiologia , Indução Embrionária/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Ciona intestinalis/citologia , Ciona intestinalis/embriologia , Ectoderma/citologia , Embrião não Mamífero/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo
3.
Development ; 144(2): 258-264, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27993985

RESUMO

In terms of their embryonic origins, the anterior and posterior parts of the ascidian central nervous system (CNS) are associated with distinct germ layers. The anterior part of the sensory vesicle, or brain, originates from ectoderm lineages following a neuro-epidermal binary fate decision. In contrast, a large part of the remaining posterior CNS is generated following neuro-mesodermal binary fate decisions. Here, we address the mechanisms that pattern the anterior brain precursors along the medial-lateral axis (future ventral-dorsal) at neural plate stages. Our functional studies show that Nodal signals are required for induction of lateral genes, including Delta-like, Snail, Msxb and Trp Delta-like/Notch signalling induces intermediate (Gsx) over medial (Meis) gene expression in intermediate cells, whereas the combinatorial action of Snail and Msxb prevents the expression of Gsx in lateral cells. We conclude that despite the distinct embryonic lineage origins within the larval CNS, the mechanisms that pattern neural precursors are remarkably similar.


Assuntos
Padronização Corporal/fisiologia , Encéfalo/embriologia , Ciona intestinalis/embriologia , Células-Tronco Neurais/fisiologia , Urocordados/embriologia , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Indução Embrionária/fisiologia , Placa Neural/embriologia
4.
Elife ; 52016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27351101

RESUMO

In many bilaterian embryos, nuclear ß-catenin (nß-catenin) promotes mesendoderm over ectoderm lineages. Although this is likely to represent an evolutionary ancient developmental process, the regulatory architecture of nß-catenin-induced mesendoderm remains elusive in the majority of animals. Here, we show that, in ascidian embryos, three nß-catenin transcriptional targets, Foxa.a, Foxd and Fgf9/16/20, are each required for the correct initiation of both the mesoderm and endoderm gene regulatory networks. Conversely, these three factors are sufficient, in combination, to produce a mesendoderm ground state that can be further programmed into mesoderm or endoderm lineages. Importantly, we show that the combinatorial activity of these three factors is sufficient to reprogramme developing ectoderm cells to mesendoderm. We conclude that in ascidian embryos, the transient mesendoderm regulatory state is defined by co-expression of Foxa.a, Foxd and Fgf9/16/20.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Urocordados/embriologia , Animais , Endoderma/embriologia , Redes Reguladoras de Genes , Mesoderma/embriologia
5.
Dev Biol ; 403(2): 172-9, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25962578

RESUMO

The ascidian neural plate exhibits a regular, grid-like arrangement of cells. Patterning of the neural plate across the medial-lateral axis is initiated by bilateral sources of Nodal signalling, such that Nodal signalling induces expression of lateral neural plate genes and represses expression of medial neural plate genes. One of the earliest lateral neural plate genes induced by Nodal signals encodes the transcription factor Snail. Here, we show that Snail is a critical downstream factor mediating this Nodal-dependent patterning. Using gain and loss of function approaches, we show that Snail is required to repress medial neural plate gene expression at neural plate stages and to maintain the lateral neural tube genetic programme at later stages. A comparison of these results to those obtained following Nodal gain and loss of function indicates that Snail mediates a subset of Nodal functions. Consistently, overexpression of Snail can partially rescue a Nodal inhibition phenotype. We conclude that Snail is an early component of the gene regulatory network, initiated by Nodal signals, that patterns the ascidian neural plate.


Assuntos
Ciona intestinalis/embriologia , Ciona intestinalis/metabolismo , Embrião não Mamífero/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal , Placa Neural/embriologia
6.
Dev Biol ; 401(1): 132-42, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25050932

RESUMO

Invertebrate and vertebrate development relies on complex processes that require many coordinated cell functions including cell adhesion, migration, proliferation and polarization. These processes depend on tissues and are spatio-temporally regulated by specific interactions between cells and between cells and the extracellular matrices. The dystroglycan, a transmembrane receptor that binds multiple extracellular matrix proteins, is expressed from oogenesis to organogenesis. There are increasing data suggesting that the axis, consisting of extracellular component-dystroglycan-cytoplasmic proteins, controls both the adhesion of cells to matrices as well as the transduction of signals coming from or directed to matrices. In this article, we review current advances leading to consider that the dystroglycan is a key protein nestled in an adhesome involved in mechanisms of cell adhesion during embryonic development.


Assuntos
Adesão Celular/fisiologia , Distroglicanas/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Humanos
7.
Development ; 141(23): 4569-79, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25359726

RESUMO

Dystroglycan (Dg) is a transmembrane receptor for laminin that must be expressed at the right time and place in order to be involved in notochord morphogenesis. The function of Dg was examined in Xenopus laevis embryos by knockdown of Dg and overexpression and replacement of the endogenous Dg with a mutated form of the protein. This analysis revealed that Dg is required for correct laminin assembly, for cell polarization during mediolateral intercalation and for proper differentiation of vacuoles. Using mutations in the cytoplasmic domain, we identified two sites that are involved in cell polarization and are required for mediolateral cell intercalation, and a site that is required for vacuolation. Furthermore, using a proteomic analysis, the cytoskeletal non-muscle myosin IIA has been identified for the first time as a molecular link between the Dg-cytoplasmic domain and cortical actin. The data allowed us to identify the adhesome laminin-Dg-myosin IIA as being required to maintain the cortical actin cytoskeleton network during vacuolation, which is crucial to maintain the shape of notochordal cells.


Assuntos
Distroglicanas/metabolismo , Laminina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Notocorda/embriologia , Organogênese/fisiologia , Vacúolos/fisiologia , Xenopus laevis/embriologia , Animais , Western Blotting , Bromodesoxiuridina , Polaridade Celular/fisiologia , Técnicas de Silenciamento de Genes , Imunoprecipitação , Hibridização In Situ , Morfolinos/genética , Proteômica , Espectrometria de Massas em Tandem
8.
Dev Biol ; 394(1): 170-80, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25062608

RESUMO

Recent evidence suggests that ascidian pigment cells are related to neural crest-derived melanocytes of vertebrates. Using live-imaging, we determine a revised cell lineage of the pigment cells in Ciona intestinalis embryos. The neural precursors undergo successive rounds of anterior-posterior (A-P) oriented cell divisions, starting at the blastula 64-cell stage. A previously unrecognized fourth A-P oriented cell division in the pigment cell lineage leads to the generation of the post-mitotic pigment cell precursors. We provide evidence that MEK/ERK signals are required for pigment cell specification until approximately 30min after the final cell division has taken place. Following each of the four A-P oriented cell divisions, ERK1/2 is differentially activated in the posterior sister cells, into which the pigment cell lineage segregates. Eph/ephrin signals are critical during the third A-P oriented cell division to spatially restrict ERK1/2 activation to the posterior daughter cell. Targeted inhibition of Eph/ephrin signals results in, at neurula stages, anterior expansion of both ERK1/2 activation and a pigment cell lineage marker and subsequently, at larval stages, supernumerary pigment cells. We discuss the implications of these findings with respect to the evolution of the vertebrate neural crest.


Assuntos
Sistema Nervoso Central/citologia , Ciona intestinalis/embriologia , Efrinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Receptores da Família Eph/metabolismo , Animais , Evolução Biológica , Blástula/citologia , Padronização Corporal , Divisão Celular , Linhagem da Célula , Ciona intestinalis/citologia , Embrião não Mamífero/citologia , Efrinas/antagonistas & inibidores , Melanócitos/citologia , Crista Neural/citologia , Crista Neural/embriologia , Pigmentação , Receptores da Família Eph/antagonistas & inibidores , Células-Tronco
9.
Development ; 140(21): 4347-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24067356

RESUMO

ERK1/2 MAP kinase exhibits a highly dynamic activation pattern in developing embryos, which largely depends on fibroblast growth factor (FGF) signals. In ascidian embryos, FGF-dependent activation of ERK1/2 occurs differentially between sister cells during marginal zone and neural lineage patterning. Selective attenuation of FGF signals by localised ephrin/Eph signals accounts for this differential ERK activation, which controls the binary fate choice of each sibling cell pair. Here, we show that p120 Ras GTPase-activating protein (p120RasGAP) is a crucial mediator of these ephrin/Eph signals. First, inhibition of p120RasGAP has a similar effect to inhibition of ephrin/Eph function during marginal zone and neural patterning. Second, p120RasGAP acts epistatically to ephrin/Eph signals. Third, p120RasGAP physically associates with Eph3 in an ephrin-dependent manner. This study provides the first in vivo evidence that the functional association between Eph and RasGAP controls the spatial extent of FGF-activated ERK.


Assuntos
Diferenciação Celular/fisiologia , Ciona intestinalis/embriologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Western Blotting , Linhagem da Célula , Primers do DNA/genética , Eletroporação , Embrião não Mamífero/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Imuno-Histoquímica , Hibridização In Situ
10.
Mol Biol Cell ; 22(16): 2957-69, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21680717

RESUMO

Dystroglycan (Dg) is a transmembrane protein involved both in the assembly and maintenance of basement membrane structures essential for tissue morphogenesis, and the transmission of signals across the plasma membrane. We used a morpholino knockdown approach to investigate the function of Dg during Xenopus laevis skin morphogenesis. The loss of Dg disrupts epidermal differentiation by affecting the intercalation of multiciliated cells, deposition of laminin, and organization of fibronectin in the extracellular matrix (ECM). Depletion of Dg also affects cell-cell adhesion, as shown by the reduction of E-cadherin expression at the intercellular contacts, without affecting the distribution of ß(1) integrins. This was associated with a decrease of cell proliferation, a disruption of multiciliated-cell intercalation, and the down-regulation of the transcription factor P63, a marker of differentiated epidermis. In addition, we demonstrated that inhibition or activation of the Notch pathway prevents and promotes transcription of X-dg. Our study showed for the first time in vivo that Dg, in addition to organizing laminin in the ECM, also acts as a key signaling component in the Notch pathway.


Assuntos
Distroglicanas/metabolismo , Epiderme/crescimento & desenvolvimento , Larva/metabolismo , Receptores Notch/metabolismo , Pele/crescimento & desenvolvimento , Xenopus laevis/crescimento & desenvolvimento , Animais , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular , Proliferação de Células , Distroglicanas/genética , Células Epidérmicas , Epiderme/metabolismo , Epistasia Genética , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Expressão Gênica , Inativação Gênica , Integrina beta1/metabolismo , Junções Intercelulares/metabolismo , Laminina/metabolismo , Larva/citologia , Microscopia de Fluorescência , Neurulação , Fosfoproteínas/metabolismo , Transdução de Sinais , Pele/citologia , Pele/metabolismo , Transativadores/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
11.
Dev Dyn ; 238(6): 1332-45, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19086027

RESUMO

Dystroglycan (Dg) is a cell adhesion receptor for laminin that has been reported to play a role in skeletal muscle cell stability, cytoskeletal organization, cell polarity, and signaling. Here we show that Dg is expressed at both the notochord/somite and the intersomitic boundaries, where laminin and fibronectin are accumulated during somitogenesis. Inhibition of Dg function with morpholino antisense oligonucleotides or a dominant negative mutant results in the normal segmentation of the presomitic mesoderm but affects the number, the size, and the integrity of somites. Depletion of Dg disrupts proliferation and alignment of myoblasts without affecting XMyoD and XMRF4 expression. It also leads to defects in laminin deposition at the intersomitic junctions, whereas expression of integrin beta1 subunits and fibronectin assembly occur normally. Our results show that Dg is critical for both proliferation and elongation of somitic cells and that the Dg-cytoplasmic domain is required for the laminin assembly at the intersomitic boundaries. Developmental Dynamics 238:1332-1345, 2009. (c) 2008 Wiley-Liss, Inc.


Assuntos
Distroglicanas/metabolismo , Morfogênese , Somitos/embriologia , Xenopus laevis/anatomia & histologia , Xenopus laevis/embriologia , Animais , Proliferação de Células , Distroglicanas/genética , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Laminina/genética , Laminina/metabolismo , Desenvolvimento Muscular/fisiologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Transdução de Sinais/fisiologia , Somitos/anatomia & histologia , Xenopus laevis/fisiologia
12.
Dev Biol ; 317(1): 106-20, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18377887

RESUMO

Dystroglycan (Dg) is a laminin receptor that is expressed at the interface between the basement membrane and the cell membrane. Dg has been reported to play a role in skeletal muscle cell stability, morphogenesis of neuroepithelial tissues, and in regulating cytoskeletal organization, cell polarization, and cell signalling. In this study, we have focused our analysis on the expression of Dg-mRNA and protein at different developmental stages in the pronephros of Xenopus laevis. In order to study its role, we performed loss-of-function experiments mediated by Dg antisense morpholinos and dominant negative mutant. We show that Dg expression is first detectable when epithelialization begins in the pronephric anlage and persists later during tubulogenesis. Loss-of-function experiments induced a disorganization of the basement membrane, a drastic reduction of pronephric tubules and duct that can lead to a renal agenesis. A diminished proliferation of pronephric cell progenitors was also observed in Dg depleted embryos. Together, these data indicate that Dg plays a key role for laminin-1 assembly and pronephric cell anchoring to the basement membrane during early development of the pronephros. They also indicate that Dg may induce a signal transduction pathway controlling cell proliferation needed for the formation of tubules and their growth.


Assuntos
Distroglicanas/metabolismo , Rim/embriologia , Rim/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Diferenciação Celular , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Laminina/metabolismo , Organogênese , Transdução de Sinais , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...