Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(4): 101008, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37044093

RESUMO

Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve "prior" expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness.


Assuntos
Córtex Motor , Traumatismos da Medula Espinal , Ratos , Animais , Traumatismos da Medula Espinal/terapia , Haplorrinos , Teorema de Bayes
2.
Neuroinformatics ; 20(3): 537-558, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34378155

RESUMO

In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model's fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.


Assuntos
Epilepsia , Espectroscopia de Luz Próxima ao Infravermelho , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1907-1910, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018374

RESUMO

Two-photon microscopy (TPM) can provide a detailed microscopic information of cerebrovascular structures. Extracting anatomical vascular models from TPM angiograms remains a tedious task due to image degeneration associated with TPM acquisitions and the complexity of microvascular networks. Here, we propose a fully automated pipeline capable of providing useful anatomical models of vascular structures captured with TPM. In the proposed method, we segment blood vessels using a fully convolutional neural network and employ the resulting binary labels to create an initial geometric graph enclosed within vessels boundaries. The initial geometry is then decimated and refined to form graphed curve skeletons that can retain both the vascular shape and its topology. We validate the proposed method on 3D realistic TPM angiographies and compare our results with that obtained through manual annotations.


Assuntos
Algoritmos , Microvasos , Encéfalo/diagnóstico por imagem , Microscopia , Microvasos/diagnóstico por imagem , Redes Neurais de Computação
4.
J Biomed Opt ; 24(5): 1-9, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30734544

RESUMO

In the context of epilepsy monitoring, electroencephalography (EEG) remains the modality of choice. Functional near-infrared spectroscopy (fNIRS) is a relatively innovative modality that cannot only characterize hemodynamic profiles of seizures but also allow for long-term recordings. We employ deep learning methods to investigate the benefits of integrating fNIRS measures for seizure detection. We designed a deep recurrent neural network with long short-term memory units and subsequently validated it using the CHBMIT scalp EEG database-a compendium of 896 h of surface EEG seizure recordings. After validating our network using EEG, fNIRS, and multimodal data comprising a corpus of 89 seizures from 40 refractory epileptic patients was used as model input to evaluate the integration of fNIRS measures. Following heuristic hyperparameter optimization, multimodal EEG-fNIRS data provide superior performance metrics (sensitivity and specificity of 89.7% and 95.5%, respectively) in a seizure detection task, with low generalization errors and loss. False detection rates are generally low, with 11.8% and 5.6% for EEG and multimodal data, respectively. Employing multimodal neuroimaging, particularly EEG-fNIRS, in epileptic patients, can enhance seizure detection performance. Furthermore, the neural network model proposed and characterized herein offers a promising framework for future multimodal investigations in seizure detection and prediction.


Assuntos
Eletroencefalografia , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador , Espectroscopia de Luz Próxima ao Infravermelho , Adolescente , Adulto , Idoso , Algoritmos , Mapeamento Encefálico/métodos , Bases de Dados Factuais , Diagnóstico por Computador , Reações Falso-Positivas , Feminino , Hemodinâmica , Humanos , Masculino , Memória de Curto Prazo , Pessoa de Meia-Idade , Redes Neurais de Computação , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...