Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr Health Aging ; 21(10): 1133-1141, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29188872

RESUMO

OBJECTIVES: Effect of 3 different dairy protein sources on the recovery of muscle function after limb immobilization in old rats. DESIGN: Longitudinal animal study. SETTING: Institut National de la Recherche Agronomique (INRA). The study took part in a laboratory setting. INTERVENTION: Old rats were subjected to unilateral hindlimb immobilization for 8 days and then allowed to recover with 3 different dietary proteins: casein, soluble milk proteins or whey proteins for 49 days. MEASUREMENTS: Body weight, muscle mass, muscle fibre size, isometric, isokinetic torque, muscle fatigability and muscle oxidative status were measured before and at the end of the immobilization period and during the recovery period i.e 7, 21, 35 and 49 days post immobilization. RESULTS: In contrast to the casein diet, soluble milk proteins and whey proteins were efficient to favor muscle mass recovery after cast immobilization during aging. By contrast, none of the 3 diary proteins was able to improve muscle strength, power and fatigability showing a discrepancy between the recovery of muscle mass and function. However, the soluble milk proteins allowed a better oxidative capacity in skeletal muscle during the rehabilitation period. CONCLUSION: Whey proteins and soluble milk proteins improve muscle mass recovery after immobilization-induced muscle atrophy in old rats but do not allow muscle functional property restoration.


Assuntos
Imobilização/efeitos adversos , Proteínas do Leite/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Atrofia Muscular/terapia , Sarcopenia/terapia , Proteínas do Soro do Leite/uso terapêutico , Animais , Estudos Longitudinais , Masculino , Ratos , Ratos Wistar , Sarcopenia/patologia , Proteínas do Soro do Leite/farmacologia
2.
Diabetes Metab ; 42(2): 96-104, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26404652

RESUMO

AIM: Studies both in vitro and ex vivo of rodent skeletal muscle have highlighted the potential involvement of neuregulin 1 (NRG1) in glucose metabolism regulation, yet nothing is known of the role of NRG1 in systemic glucose homoeostasis. For this reason, it was hypothesized that systemic delivery of NRG1 might improve glucose tolerance and that the effect might be age-dependent. METHODS: Glucose tolerance tests were performed in 6-month-old (adult) and 22-month-old (old) male Wistar rats 15min after a single injection of either NRG1 (50µg/kg) or saline (controls). Skeletal muscle and liver samples were also collected 30min after the acute NRG1 or saline treatment, while the phosphorylation status of ErbB receptors and AKT was assessed by Western blotting. RESULTS: Acute NRG1 treatment decreased the glycaemic response to an oral glucose load in both adult and old rats. NRG1 injection did not activate ErbB receptors in skeletal muscle, whereas phosphorylation of ErbB3 and AKT was markedly increased in the liver of NRG1-treated adult and old rats compared with controls. CONCLUSION: This study shows that NRG1 has a possible glucose-lowering effect in the liver and via an ErbB3/AKT signaling pathway. This NRG1 effect is also maintained in old rats, suggesting that the NRG1/ErbB signaling pathway might represent a promising therapeutic target in insulin resistance states.


Assuntos
Glicemia/efeitos dos fármacos , Glicemia/fisiologia , Intolerância à Glucose/metabolismo , Neuregulina-1/farmacologia , Envelhecimento/fisiologia , Animais , Teste de Tolerância a Glucose , Humanos , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar
3.
J Physiol ; 593(8): 2071-84, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25656230

RESUMO

Clenbuterol is a ß2 -adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg(-1) day(-1) ) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po ) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca(2+) transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (-19%, P < 0.01) and 21 days (-25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca(2+) release during contraction could partially explain these deleterious effects.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Clembuterol/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Animais , Cálcio/metabolismo , Hipertrofia/induzido quimicamente , Hipertrofia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Doenças Musculares/induzido quimicamente , Doenças Musculares/metabolismo , Ratos , Ratos Wistar
4.
Diabetes Metab ; 41(2): 168-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25573691

RESUMO

AIM: Studies in vitro have highlighted the potential involvement of neuregulin 1 (NRG1) in the regulation of energy metabolism. This effect has also been suggested in vivo, as intracerebroventricular injection of NRG1 reduces food intakes and weight gain in rodents. Thus, it was hypothesised that NRG1 might affect serum leptin levels in mice. METHODS: Weight, food intakes, energy expenditure, spontaneous physical activity and serum leptin levels were evaluated in normal-weight C57BL/6JRJ mice following intraperitoneal administration of NRG1 (50 µg/kg, three times/week) or saline for 8 weeks. Based on the results of this first experiment, leptin-resistant obese db/db mice were then given NRG1 for 8 weeks. RESULTS: Leptin serum concentrations were six times higher in C57BL/6JRJ mice treated with NRG1 than in the animals given saline. NRG1 treatment also reduced weight gain by 10% and food intakes by 15% compared with saline treatment, while energy expenditure remained unchanged. In db/db mice, serum leptin concentrations, weight gain, food intakes, energy expenditure and spontaneous physical activity were not altered by NRG1 treatment. CONCLUSION: The decrease in food intakes and weight gain associated with NRG1 treatment in C57BL/6JRJ mice may be partly explained by increased leptin levels, whereas db/db mice were not affected by the treatment, suggesting resistance to NRG1 in this pathological state.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Ingestão de Alimentos/efeitos dos fármacos , Leptina/sangue , Neuregulina-1/farmacologia , Aumento de Peso/efeitos dos fármacos , Animais , Metabolismo Energético/efeitos dos fármacos , Insulina/sangue , Camundongos , Camundongos Obesos
5.
Toxicol Appl Pharmacol ; 259(2): 263-8, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22269104

RESUMO

The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Adulto , Biópsia , Creatina Quinase/metabolismo , Exercício Físico/fisiologia , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estatísticas não Paramétricas
6.
J Appl Physiol (1985) ; 97(6): 2132-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15208291

RESUMO

The present study investigated whether blood lactate removal after supramaximal exercise and fatigue indexes measured during continuous and intermittent supramaximal exercises are related to the maximal muscle oxidative capacity in humans with different training status. Lactate recovery curves were obtained after a 1-min all-out exercise. A biexponential time function was then used to determine the velocity constant of the slow phase (gamma(2)), which denoted the blood lactate removal ability. Fatigue indexes were calculated during all-out (FI(AO)) and repeated 10-s cycling sprints (FI(Sprint)). Biopsies were taken from the vastus lateralis muscle, and maximal ADP-stimulated mitochondrial respiration (V(max)) was evaluated in an oxygraph cell on saponin-permeabilized muscle fibers with pyruvate + malate and glutamate + malate as substrates. Significant relationships were found between gamma(2) and pyruvate + malate V(max) (r = 0.60, P < 0.05), gamma(2) and glutamate + malate V(max) (r = 0.66, P < 0.01), and gamma(2) and citrate synthase activity (r = 0.76, P < 0.01). In addition, gamma(2), glutamate + malate V(max), and pyruvate + malate V(max) were related to FI(AO) (gamma(2) - FI(AO): r = 0.85; P < 0.01; glutamate + malate V(max) - FI(AO): r = 0.70, P < 0.01; and pyruvate + malate V(max) - FI(AO): r = 0.63, P < 0.01) and FI(Sprint) (gamma(2) - FI(Sprint): r = 0.74, P < 0.01; glutamate + malate V(max) - FI(Sprint): r = 0.64, P < 0.01; and pyruvate + malate V(max) - FI(Sprint): r = 0.46, P < 0.01). In conclusion, these results suggested that the maximal muscle oxidative capacity was related to blood lactate removal ability after a 1-min all-out test. Moreover, maximal muscle oxidative capacity and blood lactate removal ability were associated with the delay in the fatigue observed during continuous and intermittent supramaximal exercises in well-trained subjects.


Assuntos
Ácido Láctico/sangue , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/metabolismo , Esforço Físico/fisiologia , Adulto , Ácido Glutâmico/metabolismo , Humanos , Malatos/metabolismo , Masculino , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...