Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 135: 111180, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33433354

RESUMO

BACKGROUND AND PURPOSE: Indolamine 2,3-dioxygenase (IDO), an enzyme that catalyses the metabolism of tryptophan, may play a detrimental role in ischemia-reperfusion injury (IRI). IDO can be inhibited by 1-methyl-tryptophan, which exists in a D (D-MT) or L (L-MT) isomer. These forms show different pharmacological effects besides IDO inhibition. Therefore, we sought to investigate whether these isomers can play a protective role in renal IRI, either IDO-dependent or independent. EXPERIMENTAL APPROACH: We studied the effect of both isomers in a rat renal IRI model with a focus on IDO-dependent and independent effects. KEY RESULTS: Both MT isomers reduced creatinine and BUN levels, with D-MT having a faster onset of action but shorter duration and L-MT a slower onset but longer duration (24 h and 48 h vs 48 h and 96 h reperfusion time). Interestingly, this effect was not exclusively dependent on IDO inhibition, but rather from decreased TLR4 signalling, mimicking changes in renal function. Additionally, L-MT increased the overall survival of rats. Moreover, both MT isomers interfered with TGF-ß signalling and epithelial-mesenchymal transition. In order to study the effect of isomers in all mechanisms involved in IRI, a series of in vitro experiments was performed. The isomers affected signalling pathways in NK cells and tubular epithelial cells, as well as in dendritic cells and T cells. CONCLUSION AND IMPLICATIONS: This study shows that both MT isomers have a renoprotective effect after ischemia-reperfusion injury, mostly independent of IDO inhibition, involving mutually different mechanisms. We bring novel findings in the pharmacological properties and mechanism of action of MT isomers, which could become a novel therapeutic target of renal IRI.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Triptofano/análogos & derivados , Animais , Técnicas de Cocultura , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/enzimologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Rim/enzimologia , Rim/patologia , Nefropatias/enzimologia , Nefropatias/patologia , Lectinas Tipo C/metabolismo , Camundongos , Células NIH 3T3 , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Triptofano/farmacologia
2.
J Immunol Res ; 2016: 7509653, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556049

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease, leading to progressive destruction of joints and extra-articular tissues, including organs such as liver and spleen. The purpose of this study was to compare the effects of a potential immunomodulator, natural polyphenol N-feruloylserotonin (N-f-5HT), with methotrexate (MTX), the standard in RA therapy, in the chronic phase of adjuvant-induced arthritis (AA) in male Lewis rats. The experiment included healthy controls (CO), arthritic animals (AA), AA given N-f-5HT (AA-N-f-5HT), and AA given MTX (AA-MTX). N-f-5HT did not affect the body weight change and clinical parameters until the 14th experimental day. Its positive effect was rising during the 28-day experiment, indicating a delayed onset of N-f-5HT action. Administration of either N-f-5HT or MTX caused reduction of inflammation measured as the level of CRP in plasma and the activity of LOX in the liver. mRNA transcription of TNF-α and iNOS in the liver was significantly attenuated in both MTX and N-f-5HT treated groups of arthritic rats. Interestingly, in contrast to MTX, N-f-5HT significantly lowered the level of IL-1ß in plasma and IL-1ß mRNA expression in the liver and spleen of arthritic rats. This speaks for future investigations of N-f-5HT as an agent in the treatment of RA in combination therapy with MTX.


Assuntos
Artrite Experimental/genética , Artrite Experimental/patologia , Mediadores da Inflamação , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metotrexato/farmacologia , Serotonina/análogos & derivados , Transcriptoma , Animais , Araquidonato Lipoxigenases/genética , Araquidonato Lipoxigenases/metabolismo , Artrite Experimental/tratamento farmacológico , Biomarcadores , Proteína C-Reativa , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Especificidade de Órgãos , Ratos , Serotonina/farmacologia , Índice de Gravidade de Doença , Fatores de Tempo
3.
Bull Math Biol ; 77(7): 1401-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26223735

RESUMO

The quasi-steady-state approximation (QSSA) is commonly applied in chemical kinetics without rigorous justification. We provide details of such a justification in the ubiquitous case of reversible two-step bimolecular binding in which molecules as an intermediate step of the reaction form a transient complex. First, we justify QSSA in the regime that agrees with the results in the literature and is characterized by max{R0, L0} ≪ K(m). Here, R0 and L0 are the initial concentrations of reacting receptor and ligand, respectively, and K(m) is the Michaelis constant. We also validate QSSA under an alternative condition that can be viewed as partially irreversible binding, and it does not require a tight bound on R0 and L0 but rather requires k2 + k₋2 ≪ k₋1. Here, k₋1 is the rate constant of decomposition of the transient complex to the ligand and the receptor, and k2 and k₋2 are the forward and the reverse rate constants of transformation of the complex to the product, respectively. Furthermore, we provide arguments that QSSA can also be accurate in a regime when max{R0, L0} ≈ K(m) and k2 + k₋2 ≈ k₋1 if |R0 - L0| ≪ K(m). The derived conditions may be of practical use as they provide weaker requirements for the validity of QSSA compared to the existing results.


Assuntos
Modelos Químicos , Enzimas/metabolismo , Cinética , Ligantes , Conceitos Matemáticos , Modelos Biológicos , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...