Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NAR Genom Bioinform ; 6(2): lqae060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38817800

RESUMO

Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.

2.
Biochimie ; 216: 14-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37838351

RESUMO

The effect of mutations in the P53 family of transcription factors on their biological functions, including partial or complete loss of transcriptional activity, has been confirmed several times. At present, P53 family proteins showing partial loss of activity appear to be promising potential candidates for the development of novel therapeutic strategies which could restore their transcriptional activity. In this context, it is important to employ tools to precisely monitor their activity; in relation to this, non-canonical DNA secondary structures in promoters including G-quadruplexes (G4s) were shown to influence the activity of transcription factors. Here, we used a defined yeast assay to evaluate the impact of differently modeled G4 forming sequences on a panel of partial function P53 family mutant proteins. Specifically, a 22-mer G4 prone sequence (derived from the KSHV virus) and five derivatives that progressively mutate characteristic guanine stretches were placed upstream of a minimal promoter, adjacent to a P53 response element in otherwise isogenic yeast luciferase reporter strains. The transactivation ability of cancer-associated P53 (TA-P53α: A161T, R213L, N235S, V272L, R282W, R283C, R337C, R337H, and G360V) or Ectodermal Dyplasia syndromes-related P63 mutant proteins (ΔN-P63α: G134D, G134V and inR155) were tested. Our results show that the presence of G4 forming sequences can increase the transactivation ability of partial function P53 family proteins. These observations are pointing to the importance of DNA structural characteristics for accurate classification of P53 family proteins functionality in the context of the wide variety of TP53 and TP63 germline and somatic mutations.


Assuntos
Quadruplex G , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Ativação Transcricional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , DNA/química , Proteínas Mutantes/genética
3.
Biosci Rep ; 43(12)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38112096

RESUMO

Non-canonical secondary structures in DNA are increasingly being revealed as critical players in DNA metabolism, including modulating the accessibility and activity of promoters. These structures comprise the so-called G-quadruplexes (G4s) that are formed from sequences rich in guanine bases. Using a well-defined transcriptional reporter system, we sought to systematically investigate the impact of the presence of G4 structures on transcription in yeast Saccharomyces cerevisiae. To this aim, different G4 prone sequences were modeled to vary the chance of intramolecular G4 formation, analyzed in vitro by Thioflavin T binding test and circular dichroism and then placed at the yeast ADE2 locus on chromosome XV, downstream and adjacent to a P53 response element (RE) and upstream from a minimal CYC1 promoter and Luciferase 1 (LUC1) reporter gene in isogenic strains. While the minimal CYC1 promoter provides basal reporter activity, the P53 RE enables LUC1 transactivation under the control of P53 family proteins expressed under the inducible GAL1 promoter. Thus, the impact of the different G4 prone sequences on both basal and P53 family protein-dependent expression was measured after shifting cells onto galactose containing medium. The results showed that the presence of G4 prone sequences upstream of a yeast minimal promoter increased its basal activity proportionally to their potential to form intramolecular G4 structures; consequently, this feature, when present near the target binding site of P53 family transcription factors, can be exploited to regulate the transcriptional activity of P53, P63 and P73 proteins.


Assuntos
Quadruplex G , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Supressora de Tumor p53/genética , Regiões Promotoras Genéticas , DNA/metabolismo
4.
Biochimie ; 208: 93-99, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36549455

RESUMO

The p53 protein is a key tumor suppressor and the most commonly mutated and down-regulated protein in human tumors. It functions mainly through interaction with DNA, and p53 acts as a transcription factor that recognizes the so-called p53 target sites on the promoters of various genes. P53 has been shown to exist as many isoforms, including three C-terminal isoforms that are produced by alternative splicing. Because the C-terminal domain is responsible for sequence-nonspecific binding and regulation of p53 binding, we have analyzed DNA recognition by these C-terminal isoforms. Using atomic force microscopy, we show for the first time that all C-terminal isoforms recognize superhelical DNA. It is particularly noteworthy that a sequence-specific p53 consensus binding site is bound by p53α and ß isoforms with similar affinities, whilst p53α shows higher binding to a quadruplex sequence than both p53ß and p53γ, and p53γ loses preferential binding to both the consensus binding sequence and the quadruplex-forming sequence. These results show the important role of the variable p53 C-terminal amino acid sequences for DNA recognition.


Assuntos
Processamento Alternativo , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , DNA/genética , DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...