Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-27747137

RESUMO

Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications.

2.
IEEE Trans Vis Comput Graph ; 13(5): 991-1003, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17622682

RESUMO

Remote visualization is an enabling technology aiming to resolve the barrier of physical distance. While many researchers have developed innovative algorithms for remote visualization, previous work has focused little on systematically investigating optimal configurations of remote visualization architectures. In this paper, we study caching and prefetching, an important aspect of such architecture design, in order to optimize the fetch time in a remote visualization system. Unlike a processor cache or web cache, caching for remote visualization is unique and complex. Through actual experimentation and numerical simulation, we have discovered ways to systematically evaluate and search for optimal configurations of remote visualization caches under various scenarios, such as different network speeds, sizes of data for user requests, prefetch schemes, cache depletion schemes, etc. We have also designed a practical infrastructure software to adaptively optimize the caching architecture of general remote visualization systems, when a different application is started or the network condition varies. The lower bound of achievable latency discovered with our approach can aid the design of remote visualization algorithms and the selection of suitable network layouts for a remote visualization system.


Assuntos
Redes de Comunicação de Computadores , Gráficos por Computador , Compressão de Dados/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Teóricos , Interface Usuário-Computador , Algoritmos , Simulação por Computador , Sistemas Computacionais , Análise Numérica Assistida por Computador , Processamento de Sinais Assistido por Computador , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...