Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 10: 1078, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737053

RESUMO

Many problems of modern genetics and functional genomics require the assessment of functional effects of sequence variants, including gene expression changes. Machine learning is considered to be a promising approach for solving this task, but its practical applications remain a challenge due to the insufficient volume and diversity of training data. A promising source of valuable data is a saturation mutagenesis massively parallel reporter assay, which quantitatively measures changes in transcription activity caused by sequence variants. Here, we explore the computational predictions of the effects of individual single-nucleotide variants on gene transcription measured in the massively parallel reporter assays, based on the data from the recent "Regulation Saturation" Critical Assessment of Genome Interpretation challenge. We show that the estimated prediction quality strongly depends on the structure of the training and validation data. Particularly, training on the sequence segments located next to the validation data results in the "information leakage" caused by the local context. This information leakage allows reproducing the prediction quality of the best CAGI challenge submissions with a fairly simple machine learning approach, and even obtaining notably better-than-random predictions using irrelevant genomic regions. Validation scenarios preventing such information leakage dramatically reduce the measured prediction quality. The performance at independent regulatory regions entirely excluded from the training set appears to be much lower than needed for practical applications, and even the performance estimation will become reliable only in the future with richer data from multiple reporters. The source code and data are available at https://bitbucket.org/autosomeru_cagi2018/cagi2018_regsat and https://genomeinterpretation.org/content/expression-variants.

2.
BMC Evol Biol ; 17(Suppl 2): 258, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297306

RESUMO

BACKGROUND: Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. RESULTS: In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. CONCLUSIONS: This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.


Assuntos
Genoma , Transcriptoma/genética , Baleias/genética , Animais , Regulação da Expressão Gênica , Biblioteca Gênica , Anotação de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA