Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Crohns Colitis ; 18(3): 446-461, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748021

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel diseases (IBD) are characterized by mucosal inflammation and sequential fibrosis formation, but the exact role of the hyperactive NLRP3 inflammasome in these processes is unclear. Thus, we studied the expression and function of the NLRP3 inflammasome in the context of inflammation and fibrosis in IBD. METHODS: We analysed intestinal NLRP3 expression in mucosal immune cells and fibroblasts from IBD patients and NLRP3-associated gene expression via single-cell RNA sequencing and microarray analyses. Furthermore, cytokine secretion of NLRP3 inhibitor treated blood and mucosal cells, as well as proliferation, collagen production, and cell death of NLRP3 inhibitor treated intestinal fibroblasts from IBD patients were studied. RESULTS: We found increased NLRP3 expression in the inflamed mucosa of IBD patients and NLRP3 inhibition led to reduced IL-1ß and IL-18 production in blood cells and diminished the bioactive form of mucosal IL-1ß. Single cell analysis identified overlapping expression patterns of NLRP3 and IL-1ß in classically activated intestinal macrophages and we also detected NLRP3 expression in CD163+ macrophages. In addition, NLRP3 expression was also found in intestinal fibroblasts from IBD patients. Inhibition of NLRP3 led to reduced proliferation of intestinal fibroblasts, which was associated with a marked decrease in production of collagen type I and type VI in IBD patients. Moreover, NLRP3 inhibition in intestinal fibroblasts induced autophagy, a cellular process involved in collagen degradation. CONCLUSIONS: In the presented study, we demonstrate that inhibiting NLRP3 might pave the way for novel therapeutic approaches in IBD, especially to prevent the severe complication of intestinal fibrosis formation.


Assuntos
Doenças Inflamatórias Intestinais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Mucosa/metabolismo , Interleucina-1beta/metabolismo , Inflamação , Fibroblastos/metabolismo , Colágeno , Fibrose
2.
Blood Adv ; 4(9): 1930-1941, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32380539

RESUMO

T lymphocytes are important players in beneficial and detrimental immune responses. In contrast to other lymphocyte populations that develop in the bone marrow, T-cell precursors need to migrate to the thymus for further development. The interaction of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) is crucial for thymic entry of T-cell precursors during settings of T-cell lineage reconstitution. PSGL-1 has to be sialylated to function as a ligand for P-selectin, and the sialyltransferase ST3Gal-IV might play a critical role in this process. We therefore investigated the role of ST3Gal-IV for T-cell development using competitive mixed bone marrow chimeric mice. We found that ST3Gal-IV is dispensable for homing and engraftment of hematopoietic precursors in the bone marrow. However, ST3Gal-IV deficiency affects seeding of the thymus by early T-cell progenitors, leading to impaired restoration of the peripheral T-cell compartment. This defect could be restored by ectopic retroviral expression of ST3Gal-IV in hematopoietic stem cells derived from ST3Gal-IV-deficient donor mice. Our findings show that ST3Gal-IV plays a critical and nonredundant role for efficient T-cell lineage reconstitution after bone marrow transplantation.


Assuntos
Células-Tronco Hematopoéticas , Sialiltransferases , Animais , Medula Óssea , Transplante de Medula Óssea , Ligantes , Camundongos , Sialiltransferases/genética
3.
J Immunol ; 203(11): 3068-3077, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31659017

RESUMO

Dendritic cells (DCs) together with regulatory T cells (Tregs) are essential mediators of immune homeostasis. Disruption of function or frequency of either cell type can lead to fatal autoimmunity. We previously described that mice constitutively lacking DCs (∆DC) develop autoimmunity characterized by reduced body weight, autoantibodies, and pronounced intestinal inflammation. In this study, we show that lack of DCs leads to an altered gene expression profile in peripheral but not thymic Tregs with increased expression of inhibitory receptors. The suppressive function of Tregs from ΔDC mice was impaired in T cell cocultures. In a model of transfer colitis, Tregs from ∆DC mice were only functional in the presence of DCs in recipient mice. Lack of MHC class II on DCs also resulted in upregulation of inhibitory receptors on Tregs, reduced body weight, and elevated serum IgA levels. Further analysis of the IgA response revealed an expansion of IgA+ germinal center B cells and plasma cells in mesenteric lymph nodes and more IgA-coated commensal bacteria in feces of ∆DC mice. Thus, we show a critical role for DCs to establish intestinal homeostasis by regulating Treg function for prevention of spontaneous inflammation.


Assuntos
Células Dendríticas/imunologia , Homeostase/imunologia , Intestinos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
J Immunol ; 197(7): 2780-6, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27549169

RESUMO

Dendritic cells (DCs) are considered to be the major APCs with potent activity for priming of naive CD4 and CD8 T cells. However, T cell priming can also be achieved by other APCs including macrophages, B cells, or even nonhematopoietic cell types. Systemic low-dose infection of mice with lymphocytic choriomeningitis virus (LCMV) results in massive expansion of virus-specific CD4 and CD8 T cells. To determine the role of DCs as APCs and source of type I IFNs in this infection model, we used ΔDC mice in which DCs are constitutively ablated because of expression of the diphtheria toxin α subunit within developing DCs. ΔDC mice showed lower serum concentrations of IFN-ß and IL-12p40, but normal IFN-α levels during the first days postinfection. No differences were found for proliferation of transferred TCR-transgenic cells during the early phase of infection, suggesting that T cell priming occurred with the same efficiency in wild-type and ΔDC mice. Expansion and cytokine expression of endogenous LCMV-specific T cells was comparable between wild-type and ΔDC mice during primary infection and upon rechallenge of memory mice. In both strains of infected mice the viral load was reduced below the limit of detection with the same kinetic. Further, germinal center formation and LCMV-specific Ab responses were not impaired in ΔDC mice. This indicates that DCs are dispensable as APCs for protective immunity against LCMV infection.


Assuntos
Células Dendríticas , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Linfócitos T/imunologia , Doença Aguda , Animais , Apresentação de Antígeno , Células Dendríticas/imunologia , Ativação Linfocitária , Macrófagos/imunologia , Camundongos , Camundongos Congênicos , Camundongos Transgênicos
5.
J Immunol ; 196(6): 2561-71, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26851220

RESUMO

Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4ß7(-) and α4ß7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life.


Assuntos
Imunidade Inata/imunologia , Células Progenitoras Linfoides/imunologia , Linfopoese/imunologia , Proteínas de Membrana/imunologia , Nódulos Linfáticos Agregados/imunologia , Transferência Adotiva , Animais , Diferenciação Celular/imunologia , Separação Celular , Feto , Citometria de Fluxo , Imuno-Histoquímica , Células Progenitoras Linfoides/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nódulos Linfáticos Agregados/citologia
6.
Front Immunol ; 7: 622, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066432

RESUMO

Lymphopenic conditions lead to expansion of memory-like T cells (TML), which develop from naïve T cells by spontaneous proliferation. TML cells are often increased in the elderly population, AIDS patients, and patients recovering from radio- or chemotherapy. At present, it is unclear whether TML cells can efficiently respond to foreign antigen and participate in antiviral immunity. To address this question, we analyzed the immune response during acute low-dose infection with lymphocytic choriomeningitis virus-WE in T cell lymphopenic CD4Cre/R-diphtheria toxin alpha (DTA) mice in which most peripheral T cells show a TML phenotype. On day 8 after infection, the total number of effector T cells and polyfunctional IFN-γ and TNF-α producing CD8 T cells were three- to fivefold reduced in CD4Cre/R-DTA mice as compared to controls. Viral clearance and the humoral immune response were severely impaired in CD4Cre/R-DTA mice although CTLs efficiently killed transferred target cells in vivo. Transfer of naïve CD4 T cells but not anti-PD-L1 blockade restored the expansion of antigen-specific polyfunctional CD8 T cells and resulted in lower viral titers. This finding indicates that under lymphopenic conditions endogenous CD4 TML cell lack the capacity to promote expansion of CTLs. However, CD8 TML cells retain sufficient functional plasticity to participate in antiviral immunity in the presence of appropriate help by fully functional CD4 T cells. This capacity might be exploited to develop treatments for improvement of CD8 T cell functions under various clinical settings of lymphopenia.

7.
J Immunol ; 188(6): 2677-86, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22327073

RESUMO

Jun activation domain-binding protein 1 (JAB1) regulates ubiquitin-dependent protein degradation by deneddylation of cullin-based ubiquitin ligases and, therefore, plays a central role in regulating proliferation and apoptosis. Because these processes are decisive for B cell development, we investigated JAB1 functions in B cells by establishing a mouse strain with a B cell-specific JAB1 deletion. We show that JAB1 is essential for early B cell development, because the ablation of JAB1 expression blocks B cell development between the pro-B and pre-B cell stages. Furthermore, JAB1 deletion leads to aberrant expression of the apoptosis-triggering protein Fas ligand in pro-B cells. Concomitant B cell-specific overexpression of the antiapoptotic protein Bcl2 partially reverses the block in B cell development; rescued JAB1-deficient B cells reach the periphery and produce protective class-switched Abs after Borrelia burgdorferi infection. Interestingly, B cell-rescued mice exhibit no germinal centers but a striking extrafollicular plasma cell accumulation. In addition, JAB1 is essential for Bcl6 expression, a transcriptional repressor required for germinal center formation. These findings identify JAB1 as an important factor in checkpoint control during early B cell development, as well as in fate decisions in mature Ag-primed B cells.


Assuntos
Linfócitos B/citologia , Diferenciação Celular/imunologia , Proteínas de Ligação a DNA/biossíntese , Proteína Ligante Fas/biossíntese , Centro Germinativo/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Linfócitos B/imunologia , Complexo do Signalossomo COP9 , Separação Celular , Proteínas de Ligação a DNA/imunologia , Ensaio de Imunoadsorção Enzimática , Proteína Ligante Fas/imunologia , Citometria de Fluxo , Centro Germinativo/citologia , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeo Hidrolases/imunologia , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6 , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Immunol ; 188(2): 615-23, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22156341

RESUMO

Stimulation of the immune system by pathogens, allergens, or autoantigens leads to differentiation of CD4(+) T cells with pro- or anti-inflammatory effector cell functions. Based on functional properties and expression of characteristic cytokines and transcription factors, effector CD4(+) T cells have been grouped mainly into Th1, Th2, Th17, and regulatory T (Treg) cells. At least some of these T cell subsets remain responsive to external cues and acquire properties of other subsets, raising the hope that this functional plasticity might be exploited for therapeutic purposes. In this study, we used an Ag-specific adoptive transfer model and determined whether in vitro-polarized or ex vivo-isolated Th1, Th17, or Treg cells can be converted into IL-4-expressing Th2 cells in vivo by infection of mice with the gastrointestinal helminth Nippostrongylus brasiliensis. Th1 and Th17 cells could be repolarized to acquire the expression of IL-4 and lose the expression of their characteristic cytokines IFN-γ and IL-17A, respectively. In contrast, both in vitro-generated and ex vivo-isolated Treg cells were largely resistant to repolarization. The helminth-induced conversion of Th1 or Th17 cells into Th2 cells may partially explain the inverse correlation between helminth infection and protection against autoimmune disorders.


Assuntos
Diferenciação Celular/imunologia , Interleucina-4/biossíntese , Infecções por Strongylida/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Transferência Adotiva , Animais , Diferenciação Celular/genética , Polaridade Celular/genética , Polaridade Celular/imunologia , Células Cultivadas , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/imunologia , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Nippostrongylus/imunologia , Infecções por Strongylida/metabolismo , Infecções por Strongylida/patologia , Linfócitos T Reguladores/parasitologia , Linfócitos T Reguladores/transplante , Células Th1/patologia , Células Th1/transplante , Células Th17/patologia , Células Th17/transplante , Células Th2/parasitologia , Células Th2/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...