Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 28: 0004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327615

RESUMO

Background: Intestinal epithelial cells (IECs) play a crucial role in regulating the symbiotic relationship between the host and the gut microbiota, thereby allowing them to modulate barrier function, mucus production, and aberrant inflammation. Despite their importance, establishing an effective ex vivo culture method for supporting the prolonged survival and function of primary IECs remains challenging. Here, we aim to develop a novel strategy to support the long-term survival and function of primary IECs in response to gut microbiota by employing mild reduction of disulfides on the IEC surface proteins with tris(2-carboxyethyl)phosphine. Methods: Recognizing the crucial role of fibroblast-IEC crosstalk, we employed a cell surface modification strategy, establishing layer-to-layer contacts between fibroblasts and IECs. This involved combining negatively charged chondroitin sulfate on cell surfaces with a positively charged chitosan thin film between cells, enabling direct intercellular transfer. Validation included assessments of cell viability, efficiency of dye transfer, and IEC function upon lipopolysaccharide (LPS) treatment. Results: Our findings revealed that the layer-by-layer co-culture platform effectively facilitates the transfer of small molecules through gap junctions, providing vital support for the viability and function of primary IECs from both the small intestine and colon for up to 5 days, as evident by the expression of E-cadherin and Villin. Upon LPS treatment, these IECs exhibited a down-regulation of Villin and tight junction genes, such as E-cadherin and Zonula Occludens-1, when compared to their nontreated counterparts. Furthermore, the transcription level of Lysozyme exhibited an increase, while Mucin 2 showed a decrease in response to LPS, indicating responsiveness to bacterial molecules. Conclusions: Our study provides a layer-by-layer-based co-culture platform to support the prolonged survival of primary IECs and their features, which is important for understanding IEC function in response to the gut microbiota.

2.
J Neuroinflammation ; 19(1): 154, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35706008

RESUMO

This review provides an overview of the importance of microbiota in the regulation of gut-brain communication in immune-related neurological disorders. The gastrointestinal (GI) tract hosts a diverse abundance of microbiota, referred to as gut microbiota. The gut microbiota plays a role in the maintenance of GI tract homeostasis and is likely to have multiple effects on brain development and function. The bidirectional communication between the gut microbiota and the brain is termed the microbiota-gut-brain axis. This communication between the intestine and the brain appears to affect human health and behavior, as certain animal studies have demonstrated the association between alterations in the gut microbiota and neurological disorders. Most insights about the microbiota-gut-brain axis come from germ-free animal models, which reveal the importance of gut microbiota in neural function. To date, many studies have observed the impact of the gut microbiota in patients with neurological disorders. Although many studies have investigated the microbiota-gut-brain axis, there are still limitations in translating this research to humans given the complexities of the relationship between the gut microbiota and the brain. In this review, we discuss emerging evidence of how the microbiota-gut-brain axis regulates brain development and function through biological networks, as well as the possible contribution of the microbiota-gut-brain axis in immune-related neurological disorders.


Assuntos
Microbioma Gastrointestinal , Doenças do Sistema Imunitário , Microbiota , Doenças do Sistema Nervoso , Animais , Encéfalo/fisiologia , Humanos , Microbiota/fisiologia
3.
Stem Cell Reports ; 16(8): 1938-1952, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242615

RESUMO

Serotonin (5-HT) neurons, the major components of the raphe nuclei, arise from ventral hindbrain progenitors. Based on anatomical location and axonal projection, 5-HT neurons are coarsely divided into rostral and caudal groups. Here, we propose a novel strategy to generate hindbrain 5-HT neurons from human pluripotent stem cells (hPSCs), which involves the formation of ventral-type neural progenitor cells and stimulation of the hindbrain 5-HT neural development. A caudalizing agent, retinoid acid, was used to direct the cells into the hindbrain cell fate. Approximately 30%-40% of hPSCs successfully developed into 5-HT-expressing neurons using our protocol, with the majority acquiring a caudal rhombomere identity (r5-8). We further modified our monolayer differentiation system to generate 5-HT neuron-enriched hindbrain-like organoids. We also suggest downstream applications of our 5-HT monolayer and organoid cultures to study neuronal response to gut microbiota. Our methodology could become a powerful tool for future studies related to 5-HT neurotransmission.


Assuntos
Técnicas de Cultura de Células/métodos , Neurônios/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Rombencéfalo/citologia , Serotonina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Humanos , Imuno-Histoquímica/métodos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/metabolismo , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Rombencéfalo/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Tretinoína/farmacologia
4.
Stem Cell Res Ther ; 12(1): 285, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985576

RESUMO

BACKGROUND: Vitamin D3 is important for normal function of the intestinal epithelial cells (IECs). In this study, we aimed to investigate the effects of vitamin D3 on the differentiation, stemness, and viability of healthy IECs in intestinal organoids. METHODS: Intestinal organoids derived from mouse small intestine were treated with vitamin D3, and the effects on intestinal stemness and differentiation were evaluated using real-time PCR and immunofluorescence staining of the distinct lineage markers. Cell viability was analyzed using viability and apoptosis assays. RESULTS: Vitamin D3 enhanced IEC differentiation into the distinct lineages of specialized IECs, including Paneth, goblet, and enteroendocrine cells and absorptive enterocytes. Decreased expression levels of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) and the presence of several LGR5-green fluorescent protein (GFP)-positive cells were observed in vitamin D3-treated organoids derived from LGR5-GFP mice. The formation of the crypt-villus structure was also inhibited by vitamin D3, suggesting that vitamin D3 suppresses intestinal cell stemness. Furthermore, the expression levels of unfolded protein response genes, C/EBP homologous protein (CHOP), and activating transcription factor 6 (ATF6) were upregulated in vitamin D3-treated organoids. Moreover, vitamin D3 promoted apoptotic cell death in intestinal cells, which may be associated with the decrease in intestinal stemness. LGR5 gene expression, ISC number, and apoptotic cell death were partially recovered in the presence of the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), suggesting that intestinal stemness suppression and intestinal apoptosis occurred via ER stress activation. CONCLUSIONS: Our study provides important insights into the effects of vitamin D3 on the induction of IEC differentiation and apoptotic cell death, and inhibition of intestinal stemness accompanied by ER stress augmentation.


Assuntos
Colecalciferol , Organoides , Animais , Diferenciação Celular , Colecalciferol/farmacologia , Mucosa Intestinal , Intestinos , Camundongos
5.
Artigo em Inglês | MEDLINE | ID: mdl-32974214

RESUMO

The intestinal tract is one of the most sensitive organs following irradiation. The protective effect of specific indigenous microbiota on irradiation-induced damage to intestinal epithelial cells has not been reported. Mice were irradiated with a single dose of 6 Gy of gamma rays. The intestinal damage was analyzed by histopathology. Intestinal stemness and differentiation were determined by intestinal organoid culture. Microbiota community was observed by high-throughput 16S rRNA gene sequencing and oligotyping analysis. We showed that distal small intestine was damaged by sublethal dose of gamma irradiation. Intestinal organoids derived from the irradiated mice showed defects in budding and mucin expression, suggesting the detrimental effect of irradiation on the intestinal stemness and differentiation. In addition, irradiation reduced intestinal immunoglobulin A level, concomitant with decreased microbiota diversity based on our high-throughput 16S rRNA gene sequencing data. Especially, the relative abundance of Lactobacillus was reduced at early time point post-irradiation; however, it was recovered at late time point. Oligotyping analysis within the Lactobacillus genus indicated that Lactobacillus-related oligotype 1 (OT1) including Lactobacillus acidophilus might drive recovery after irradiation as it was associated with increased long-term numbers post-exposure. We showed that treatment with heat-killed L. acidophilus rescued the budding-impaired organoids and induced sufficient differentiation in epithelial cells, and particularly mucin-producing cells, in intestinal organoids. This study provides the first evidence that the indigenous gut bacteria L. acidophilus enhance intestinal epithelial function with respect to irradiation-induced intestinal damage by improving intestinal stem cell function and cell differentiation.


Assuntos
Lactobacillus acidophilus , Probióticos , Animais , Células Epiteliais , Lactobacillus , Camundongos , RNA Ribossômico 16S/genética
6.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653062

RESUMO

The gastrointestinal (GI) tract is a highly complex organ composed of the intestinal epithelium layer, intestinal microbiota, and local immune system. Intestinal microbiota residing in the GI tract engages in a mutualistic relationship with the host. Different sections of the GI tract contain distinct proportions of the intestinal microbiota, resulting in the presence of unique bacterial products in each GI section. The intestinal microbiota converts ingested nutrients into metabolites that target either the intestinal microbiota population or host cells. Metabolites act as messengers of information between the intestinal microbiota and host cells. The intestinal microbiota composition and resulting metabolites thus impact host development, health, and pathogenesis. Many recent studies have focused on modulation of the gut microbiota and their metabolites to improve host health and prevent or treat diseases. In this review, we focus on the production of microbial metabolites, their biological impact on the intestinal microbiota composition and host cells, and the effect of microbial metabolites that contribute to improvements in inflammatory bowel diseases and metabolic diseases. Understanding the role of microbial metabolites in protection against disease might offer an intriguing approach to regulate disease.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/patologia , Doenças Metabólicas/patologia , Bactérias/química , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/toxicidade , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/toxicidade , Flavonas/metabolismo , Flavonas/toxicidade , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/microbiologia , Poliaminas/metabolismo , Poliaminas/toxicidade
7.
Microorganisms ; 7(8)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430948

RESUMO

The gut microbiota maintains a symbiotic relationship with the host and regulates several important functions including host metabolism, immunity, and intestinal barrier function. Intestinal inflammation and inflammatory bowel disease (IBD) are commonly associated with dysbiosis of the gut microbiota. Alterations in the gut microbiota and associated changes in metabolites as well as disruptions in the intestinal barrier are evidence of the relationship between the gut microbiota and intestinal inflammation. Recent studies have found that many factors may alter the gut microbiota, with the effects of diet being commonly-studied. Extrinsic stressors, including environmental stressors, antibiotic exposure, sleep disturbance, physical activity, and psychological stress, may also play important roles in altering the composition of the gut microbiota. Herein, we discuss the roles of the gut microbiota in intestinal inflammation in relation to diet and other extrinsic stressors.

8.
Front Microbiol ; 9: 1588, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065713

RESUMO

The beneficial role of gut microbiota in intestinal diseases has been highlighted recently. Bacteroides fragilis found in the human gastrointestinal tract is a well-studied example of a beneficial bacterium that protects against intestinal inflammation. Polysaccharide A (PSA) from B. fragilis induces the production of interleukin (IL)-10 from immune cells via Toll-like receptor 2 (TLR2) signaling in animal colitis models. The direct effect of PSA on human colorectal cancer (CRC) cells has not been studied. Here, we report the effect of PSA from B. fragilis on CRC pathogenesis in SW620 and HT29 CRC cells and the molecular signaling underlying these effects. We demonstrated that PSA induced the production of the pro-inflammatory cytokine, IL-8, but not IL-10, in CRC cells. PSA inhibited CRC cell proliferation by controlling the cell cycle and impaired CRC cell migration and invasion by suppressing epithelial mesenchymal transition. Moreover, as in the case of other animal intestinal diseases, the protective role of PSA against CRC pathogenesis was also mediated by TLR2. Our results reveal that PSA from B. fragilis plays a protective role against CRC via TLR2 signaling.

9.
J Microbiol ; 56(3): 154-162, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29492872

RESUMO

The intestinal microbiota is comprised of millions of microorganisms that reside in the gastrointestinal tract and consistently interact with the host. Host factors such as diet and disease status affect the composition of the microbiota, while the microbiota itself produces metabolites that can further manipulate host physiology. Dysbiosis of the intestinal microbiota has been characterized in patients with certain metabolic diseases, some of which involve damage to the host intestinal epithelial barrier and alterations in the immune system. In this review, we will discuss the consequences of dietdependent bacterial dysbiosis in the gastrointestinal tract, and how the associated interaction with epithelial and immune cells impacts metabolic diseases.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/imunologia , Sistema Imunitário/imunologia , Doenças Metabólicas/imunologia , Doenças Metabólicas/microbiologia , Animais , Fenômenos Fisiológicos Bacterianos , Dieta , Dieta Hiperlipídica/efeitos adversos , Disbiose , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Humanos , Intestinos/citologia , Intestinos/imunologia , Intestinos/microbiologia , Doenças Metabólicas/etiologia , Camundongos
10.
PLoS One ; 12(10): e0186351, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023599

RESUMO

The development of Th17 cells is accompanied by the acquisition of responsiveness to both IL-12 and IL-23, cytokines with established roles in the development and/or function of Th1 and Th17 cells, respectively. IL-12 signaling promotes antigen-dependent Th1 differentiation but, in combination with IL-18, allows the antigen-independent perpetuation of Th1 responses. On the other hand, while IL-23 is dispensable for initial commitment to the Th17 lineage, it promotes the pathogenic function of the Th17 cells. In this study, we have examined the overlap between Th1 and Th17 cells in their responsiveness to common pro-inflammatory cytokines and how this affects the antigen-independent cytokine responses of Th17 cells. We found that in addition to the IL-1 receptor, developing Th17 cells also up-regulate the IL-18 receptor. Consequently, in the presence of IL-1ß or IL-18, and in the absence of TCR activation, Th17 cells produce Th17 lineage cytokines in a STAT3-dependent manner when stimulated with IL-23, and IFN© via a STAT4-dependent mechanism when stimulated with IL-12. Thus, building on previous findings of antigen-induced plasticity of Th17 cells, our results indicate that this potential of Th17 cells extends to their cytokine-dependent antigen-independent responses. Collectively, our data suggest a model whereby signaling via either IL-1ß or IL-18 allows for bystander responses of Th17 cells to pathogens or pathogen products that differentially activate innate cell production of IL-12 or IL-23.


Assuntos
Interleucina-12/metabolismo , Interleucina-1/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Células Th17/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Interleucina-1beta/metabolismo , Interleucina-6/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Interferência de RNA , Receptores de Antígenos de Linfócitos T/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/citologia , Células Th17/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Regulação para Cima/efeitos dos fármacos
11.
Microbiology (Reading) ; 160(Pt 11): 2452-2463, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25227896

RESUMO

The Agrobacterium tumefaciens zinc uptake regulator (Zur) was shown to negatively regulate the zinc uptake genes znuABC, encoding a zinc transport system belonging to the ATP-binding cassette (ABC) transporter family, and zinT, which encodes a periplasmic zinc-binding protein. The expression of znuABC and zinT was inducible when cells were grown in medium containing a metal chelator (EDTA), and this induction was shown to be specific for zinc depletion. The expression of znuABC was reduced in response to increased zinc in a dose-dependent manner, and zinT had a less pronounced but similar pattern of zinc-regulated expression. The inactivation of zur led to constitutively high expression of znuABC and zinT. In addition, a zur mutant had an increased total zinc content compared to the WT NTL4 strain, whereas the inactivation of zinT caused a reduction in the total zinc content. The zinT gene is shown to play a dominant role and to be more important than znuA and znuB for A. tumefaciens survival under zinc deprivation. ZinT can function even when ZnuABC is inactivated. However, mutations in zur, znuA, znuB or zinT did not affect the virulence of A. tumefaciens.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Homeostase
12.
Microbiology (Reading) ; 160(Pt 5): 863-871, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24600024

RESUMO

Agrobacterium tumefaciens membrane-bound ferritin (MbfA) is a member of the erythrin (Er)-vacuolar iron transport family. The MbfA protein has an Er or ferritin-like domain at its N terminus and has been predicted to have five transmembrane segments in its C-terminal region. Analysis of protein localization using PhoA and LacZ reporter proteins supported the view that the N-terminal di-iron site is located in the cytoplasm whilst the C-terminal end faces the periplasm. An A. tumefaciens mbfA mutant strain had 1.5-fold higher total iron content than the WT strain. Furthermore, multi-copy expression of mbfA reduced total iron content two- and threefold in WT and mbfA mutant backgrounds, respectively. These results suggest that MbfA may function as an iron exporter rather than an iron storage protein. The mbfA mutant showed 10-fold increased sensitivity to the iron-activated antibiotic streptonigrin, implying that the mutant had increased accumulation of intracellular free iron. Growth of the mbfA mutant was reduced in the presence of high iron under acidic conditions. The expression of mbfA was induced highly in cells grown in iron-replete medium at pH 5.5, further supporting the view that mbfA is involved in the response to iron under acidic conditions. A. tumefaciens MbfA may play a protective role against increased free iron in the cytoplasm through iron binding and export, thus preventing iron-induced toxicity via the Fenton reaction.


Assuntos
Agrobacterium tumefaciens/efeitos dos fármacos , Agrobacterium tumefaciens/metabolismo , Membrana Celular/metabolismo , Farmacorresistência Bacteriana , Ferritinas/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Ferritinas/genética , Deleção de Genes , Concentração de Íons de Hidrogênio , Ferro/toxicidade , Proteínas de Membrana Transportadoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...