Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(39): 19552-19562, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501315

RESUMO

High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell's DNA replication and repair machineries to replicate their own genomes. How this host-pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.


Assuntos
Quebras de DNA de Cadeia Dupla , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Feminino , Instabilidade Genômica , Recombinação Homóloga , Interações Hospedeiro-Patógeno , Humanos , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Neoplasias do Colo do Útero/virologia
2.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462557

RESUMO

The BMRF1 protein of Epstein-Barr virus (EBV) has multiple roles in viral lytic infection, including serving as the DNA polymerase processivity factor, activating transcription from several EBV promoters and inhibiting the host DNA damage response to double-stranded DNA breaks (DSBs). Using affinity purification coupled to mass spectrometry, we identified the nucleosome remodeling and deacetylation (NuRD) complex as the top interactor of BMRF1. We further found that NuRD components localize with BMRF1 at viral replication compartments and that this interaction occurs through the BMRF1 C-terminal region previously shown to mediate transcriptional activation. We identified an RBBP4 binding motif within this region that can interact with both RBBP4 and MTA2 components of the NuRD complex and showed that point mutation of this motif abrogates NuRD binding as well as the ability of BMRF1 to activate transcription from the BDLF3 and BLLF1 EBV promoters. In addition to its role in transcriptional regulation, NuRD has been shown to contribute to DSB signaling in enabling recruitment of RNF168 ubiquitin ligase and subsequent ubiquitylation at the break. We showed that BMRF1 inhibited RNF168 recruitment and ubiquitylation at DSBs and that this inhibition was at least partly relieved by loss of the NuRD interaction. The results reveal a mechanism by which BMRF1 activates transcription and inhibits DSB signaling and a novel role for NuRD in transcriptional activation in EBV.IMPORTANCE The Epstein-Barr virus (EBV) BMRF1 protein is critical for EBV infection, playing key roles in viral genome replication, activation of EBV genes, and inhibition of host DNA damage responses (DDRs). Here we show that BMRF1 targets the cellular nucleosome remodeling and deacetylation (NuRD) complex, using a motif in the BMRF1 transcriptional activation sequence. Mutation of this motif disrupts the ability of BMRF1 to activate transcription and interfere with DDRs, showing the importance of the NuRD interaction for BMRF1 functions. BMRF1 was shown to act at the same step in the DDR as NuRD, suggesting that it interferes with NuRD function.


Assuntos
Antígenos Virais/metabolismo , Dano ao DNA , Herpesvirus Humano 4/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Antígenos Virais/genética , Linhagem Celular Tumoral , Replicação do DNA , DNA Viral/genética , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Células HEK293 , Células HeLa , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Humanos , Glicoproteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Transativadores/metabolismo , Ativação Transcricional , Proteínas Virais/metabolismo , Replicação Viral
3.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743367

RESUMO

To replicate and persist in human cells, linear double-stranded DNA (dsDNA) viruses, such as Epstein-Barr virus (EBV), must overcome the host DNA damage response (DDR) that is triggered by the viral genomes. Since this response is necessary to maintain cellular genome integrity, its inhibition by EBV is likely an important factor in the development of cancers associated with EBV infection, including gastric carcinoma. Here we present the first extensive screen of EBV proteins that inhibit dsDNA break signaling. We identify the BKRF4 tegument protein as a DDR inhibitor that interferes with histone ubiquitylation at dsDNA breaks and recruitment of the RNF168 histone ubiquitin ligase. We further show that BKRF4 binds directly to histones through an acidic domain that targets BKRF4 to cellular chromatin and is sufficient to inhibit dsDNA break signaling. BKRF4 transcripts were detected in EBV-positive gastric carcinoma cells (AGS-EBV), and these increased in lytic infection. Silencing of BKRF4 in both latent and lytic AGS-EBV cells (but not in EBV-negative AGS cells) resulted in increased dsDNA break signaling, confirming a role for BKRF4 in DDR inhibition in the context of EBV infection and suggesting that BKRF4 is expressed in latent cells. BKRF4 was also found to be consistently expressed in EBV-positive gastric tumors in the absence of a full lytic infection. The results suggest that BKRF4 plays a role in inhibiting the cellular DDR in latent and lytic EBV infection and that the resulting accumulation of DNA damage might contribute to development of gastric carcinoma.IMPORTANCE Epstein-Barr virus (EBV) infects most people worldwide and is causatively associated with several types of cancer, including ∼10% of gastric carcinomas. EBV encodes ∼80 proteins, many of which are believed to manipulate cellular regulatory pathways but are poorly characterized. The DNA damage response (DDR) is one such pathway that is critical for maintaining genome integrity and preventing cancer-associated mutations. In this study, a screen for EBV proteins that inhibit the DDR identified BKRF4 as a DDR inhibitor that binds histones and blocks their ubiquitylation at the DNA damage sites. We also present evidence that BKRF4 is expressed in both latent and lytic forms of EBV infection, where it downregulates the DDR, as well as in EBV-positive gastric tumors. The results suggest that BKRF4 could contribute to the development of gastric carcinoma through its ability to inhibit the DDR.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , Histonas/metabolismo , Neoplasias Gástricas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Infecções por Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Humanos , Domínios Proteicos , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas Virais/química , Replicação Viral
4.
Endocr Relat Cancer ; 23(10): T1-T17, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27530658

RESUMO

Maintaining genomic integrity is essential to preserve normal cellular physiology and to prevent the emergence of several human pathologies including cancer. The breast cancer susceptibility gene 2 (BRCA2, also known as the Fanconi anemia (FA) complementation group D1 (FANCD1)) is a potent tumor suppressor that has been extensively studied in DNA double-stranded break (DSB) repair by homologous recombination (HR). However, BRCA2 participates in numerous other processes central to maintaining genome stability, including DNA replication, telomere homeostasis and cell cycle progression. Consequently, inherited mutations in BRCA2 are associated with an increased risk of breast, ovarian and pancreatic cancers. Furthermore, bi-allelic mutations in BRCA2 are linked to FA, a rare chromosome instability syndrome characterized by aplastic anemia in children as well as susceptibility to leukemia and cancer. Here, we discuss the recent developments underlying the functions of BRCA2 in the maintenance of genomic integrity. The current model places BRCA2 as a central regulator of genome stability by repairing DSBs and limiting replication stress. These findings have direct implications for the development of novel anticancer therapeutic approaches.


Assuntos
Proteína BRCA2/fisiologia , Reparo do DNA/genética , Replicação do DNA/genética , Instabilidade Genômica/genética , Animais , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Humanos , Origem de Replicação/genética
5.
Bioconjug Chem ; 27(8): 1942-8, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27459208

RESUMO

The current interest for platinum N-heterocyclic carbene complexes in cancer research stems from their impressive toxicity reported against a range of different human cancer cells. To date, the demonstration of their in vivo efficacy relative to that of established platinum-based drugs has not been specifically addressed. Here, we introduce an innovative approach to increase the NHC-Pt complex potency whereby multiple NHC-Pt(II) complexes are coordinated along a polyethylenimine polymer (PEI) chain. We show that such NHC-Pt(II)-PEI conjugates induce human cancer cell death in vitro and in vivo in a xenograft mouse model with no observable side effects in contrast to oxaliplatin. Additional studies indicate nucleus and mitochondria targeting and suggest various mechanisms of action compared to classical platinum-based anticancer drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Polietilenoimina/química , Animais , Antineoplásicos/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Compostos Organoplatínicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...